cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245883 Number of distinct chromatic polynomials among all connected graphs on n nodes.

Original entry on oeis.org

1, 1, 2, 5, 14, 50, 231, 1650, 21121, 584432
Offset: 1

Views

Author

Travis Hoppe and Anna Petrone, Aug 05 2014

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic polynomial is given by chi_G(x) = Sum_p (x)k, where the sum is over all stable partitions of G, k is the length (number of blocks) of p, and (x)_k is the falling factorial x(x-1)(x-2)...(x-k+1). - _Gus Wiseman, Nov 24 2018

Examples

			From _Gus Wiseman_, Nov 24 2018: (Start)
The a(4) = 5 chromatic polynomials:
  -6x + 11x^2 - 6x^3 + x^4
  -4x +  8x^2 - 5x^3 + x^4
  -2x +  5x^2 - 4x^3 + x^4
  -3x +  6x^2 - 4x^3 + x^4
   -x +  3x^2 - 3x^3 + x^4
(End)
		

Crossrefs

Cf. A229048 (simple graphs, including disconnected ones, with unique chromatic polynomials).

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    falling[x_,k_]:=Product[(x-i),{i,0,k-1}];
    chromPoly[g_]:=Expand[Sum[falling[x,Length[stn]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}]];
    simpleSpans[n_]:=simpleSpans[n]=If[n==0,{{}},Union@@Table[If[#=={},Union[ine,{{n}}],Union[Complement[ine,List/@#],{#,n}&/@#]]&/@Subsets[Range[n-1]],{ine,simpleSpans[n-1]}]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Union[chromPoly/@Select[simpleSpans[n],Length[csm[#]]==1&]]],{n,5}] (* Gus Wiseman, Nov 24 2018 *)