A245883 Number of distinct chromatic polynomials among all connected graphs on n nodes.
1, 1, 2, 5, 14, 50, 231, 1650, 21121, 584432
Offset: 1
Examples
From _Gus Wiseman_, Nov 24 2018: (Start) The a(4) = 5 chromatic polynomials: -6x + 11x^2 - 6x^3 + x^4 -4x + 8x^2 - 5x^3 + x^4 -2x + 5x^2 - 4x^3 + x^4 -3x + 6x^2 - 4x^3 + x^4 -x + 3x^2 - 3x^3 + x^4 (End)
Links
- Travis Hoppe and Anna Petrone, Encyclopedia of Finite Graphs
- T. Hoppe and A. Petrone, Integer sequence discovery from small graphs, arXiv preprint arXiv:1408.3644 [math.CO], 2014.
- Eric Weisstein's World of Mathematics, Chromatic Polynomial
Crossrefs
Programs
-
Mathematica
spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}]; falling[x_,k_]:=Product[(x-i),{i,0,k-1}]; chromPoly[g_]:=Expand[Sum[falling[x,Length[stn]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}]]; simpleSpans[n_]:=simpleSpans[n]=If[n==0,{{}},Union@@Table[If[#=={},Union[ine,{{n}}],Union[Complement[ine,List/@#],{#,n}&/@#]]&/@Subsets[Range[n-1]],{ine,simpleSpans[n-1]}]]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; Table[Length[Union[chromPoly/@Select[simpleSpans[n],Length[csm[#]]==1&]]],{n,5}] (* Gus Wiseman, Nov 24 2018 *)
Comments