cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245930 G.f.: 1 / AGM((1 - 3*x)^2, (1 + x)^2).

Original entry on oeis.org

1, 2, 3, 4, 9, 30, 91, 232, 549, 1378, 3839, 11100, 31301, 85694, 234207, 653328, 1856829, 5300010, 15062839, 42702596, 121448901, 347414166, 997886671, 2870139480, 8257776521, 23782773242, 68627659563, 198437633884, 574654851209, 1665825647430, 4833258038251, 14037680955552, 40816416373293
Offset: 0

Views

Author

Paul D. Hanna, Aug 14 2014

Keywords

Comments

Here AGM(x,y) = AGM((x+y)/2, sqrt(x*y)) denotes the arithmetic-geometric mean.
Self-convolution of A245931.
Limit a(n+1)/a(n) = 3.

Examples

			G.f.: A(x) = 1 + 2*x + 3*x^2 + 4*x^3 + 9*x^4 + 30*x^5 + 91*x^6 + 232*x^7 +...
where
1/A(x) = 1 - 2*x + x^2 - 4*x^4 - 8*x^5 - 12*x^6 - 16*x^7 - 40*x^8 - 144*x^9 - 448*x^10 - 1152*x^11 - 2732*x^12 - 6840*x^13 - 18964*x^14 +...
equals AGM((1 - 3*x)^2, (1 + x)^2).
SPECIFIC VALUES:
A(x) = 2 at x = 0.2650276124990406644...
A(x) = 3 at x = 0.31872724866867463...
A(x) = 4 at x = 0.32990867978741...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1); A = 1 / agm((1-3*x)^2, (1+x)^2 +x*O(x^n)); polcoeff(A,n)}
    for(n=0,35,print1(a(n),", "))

Formula

G.f.: 1 / AGM((1-x)^2 + 4*x^2, (1-x)^2 - 4*x^2).
G.f.: 1 / AGM((1-x)^2, sqrt((1-x)^4 - 16*x^4)).
Recurrence: n^2*a(n) = (5*n^2 - 5*n + 2)*a(n-1) - 2*(5*n^2 - 10*n + 6)*a(n-2) + 2*(5*n^2 - 15*n + 12)*a(n-3) + 11*(n-2)^2*a(n-4) - 15*(n-3)*(n-2)*a(n-5). - Vaclav Kotesovec, Aug 16 2014
a(n) ~ 3^(n+2) / (4*Pi*n). - Vaclav Kotesovec, Aug 16 2014