A245920
Limit-reverse of the (2,1)-version of the infinite Fibonacci word A014675 with first term as initial block.
Original entry on oeis.org
2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2
Offset: 0
S = infinite Fibonacci word A014675, B = (s(0)); that is, (m,k) = (0,0);
S = (2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,...)
B'(0) = (2)
B'(1) = (2,1)
B'(2) = (2,1,2)
B'(3) = (2,1,2,1)
B'(4) = (2,1,2,1,2)
B'(5) = (2,1,2,1,2,2)
S* = (2,1,2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,...),
with index sequence (0,2,5,7,15,...)
-
z = 100; seqPosition2[list_, seqtofind_] := Last[Last[Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 2]]] &[seqtofind]; x = GoldenRatio; s = Differences[Table[Floor[n*x], {n, 1, z^2}]] ; ans = Join[{s[[p[0] = pos = seqPosition2[s, #] - 1]]}, #] &[{s[[1]]}]; cfs = Table[s = Drop[s, pos - 1]; ans = Join[{s[[p[n] = pos = seqPosition2[s, #] - 1]]}, #] &[ans], {n, z}]; rcf = Last[Map[Reverse, cfs]]
A246129
Decimal expansion of the number whose continued fraction is given by A246127 (limiting block extension of an infinite Fibonacci word).
Original entry on oeis.org
2, 3, 6, 6, 3, 0, 4, 6, 9, 4, 6, 5, 3, 2, 7, 2, 6, 5, 6, 6, 8, 2, 4, 9, 7, 2, 0, 5, 8, 6, 1, 4, 5, 6, 9, 1, 0, 0, 8, 1, 9, 9, 4, 8, 1, 0, 4, 0, 9, 5, 8, 9, 1, 0, 9, 3, 0, 5, 4, 1, 0, 2, 7, 1, 3, 8, 5, 3, 7, 7, 9, 1, 0, 1, 9, 1, 3, 5, 3, 1, 1, 3, 4, 6, 2, 6
Offset: 1
[2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1,...] = 2.3663046946532726566824972058...
-
seqPosition1[list_, seqtofind_] := If[Length[#] > Length[list], {}, Last[Last[ Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 1]]]] &[seqtofind]; s = Differences[Table[Floor[n*GoldenRatio], {n, 10000}]]; t = {{2}}; p[0] = seqPosition1[s, Last[t]]; s = Drop[s, p[0]]; Off[Last::nolast]; n = 1; While[(p[n] = seqPosition1[s, Last[t]]) > 0, (AppendTo[t, Take[s, {#, # + Length[Last[t]]}]]; s = Drop[s, #]) &[p[n]]; n++]; On[Last::nolast]; t1 = Last[t] (*A246127*)
q = -1 + Accumulate[Table[p[k], {k, 0, n - 1}]] (*A246128*)
u = N[FromContinuedFraction[t1], 100]
r = RealDigits[u][[1]] (* A246129 *)
A245976
Decimal expansion of the number whose continued fraction is given by A245920 (limit-reverse of an infinite Fibonacci word).
Original entry on oeis.org
2, 7, 2, 9, 9, 4, 4, 1, 9, 4, 7, 6, 7, 8, 5, 0, 2, 2, 9, 0, 7, 8, 3, 7, 4, 3, 0, 7, 0, 0, 5, 9, 9, 8, 1, 6, 7, 3, 8, 1, 8, 8, 7, 0, 1, 6, 4, 0, 5, 2, 5, 8, 0, 2, 0, 4, 9, 2, 7, 5, 4, 1, 0, 1, 9, 9, 6, 3, 3, 6, 2, 4, 3, 4, 5, 7, 7, 8, 6, 7, 1, 3, 1, 1, 6, 8
Offset: 1
[2,1,2,1,2,2,1,2,1,2,...] = 2.72994419476785022907837430700599816738...
-
z = 300; seqPosition2[list_, seqtofind_] := Last[Last[Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 2]]] &[seqtofind]; x = GoldenRatio; s = Differences[Table[Floor[n*x], {n, 1, z^2}]]; (* A014675 *)
x1 = N[FromContinuedFraction[s], 100]
r1 = RealDigits[x1, 10] (* A245975 *)
ans = Join[{s[[p[0] = pos = seqPosition2[s, #] - 1]]}, #] &[{s[[1]]}];
cfs = Table[s = Drop[s, pos - 1]; ans = Join[{s[[p[n] = pos = seqPosition2[s, #] - 1]]}, #] &[ans], {n, z}];
rcf = Last[Map[Reverse, cfs]] (* A245920 *)
x2 = N[FromContinuedFraction[rcf], z]
r2 = RealDigits[x2, 10] (* this sequence *)
Showing 1-3 of 3 results.
Comments