A245977 Limit-reverse of the infinite Fibonacci word A014675 = (s(0),s(1),...) = (2,1,2,2,1,2,1,2, ...) using initial block (s(2),s(3)) = (2,2).
2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2
Offset: 0
Keywords
Examples
S = the infinite Fibonacci word A014675, with B = (s(2), s(3)); that is, (m,k) = (2,3) S = (2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,...) B'(0) = (2,2) B'(1) = (2,2,1) B'(2) = (2,2,1,2) B'(3) = (2,2,1,2,1) B'(4) = (2,2,1,2,1,2) B'(5) = (2,2,1,2,1,2,2) S* = (2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,1,...), with index sequence (3,8,11,16,21,29,...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..300
Programs
-
Mathematica
z = 100; seqPosition2[list_, seqtofind_] := Last[Last[Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 2]]] &[seqtofind]; x = GoldenRatio; s = Differences[Table[Floor[n*x], {n, 1, z^2}]]; ans = Join[{s[[p[0] = pos = seqPosition2[s, #] - 1]]}, #] &[{s[[3]], s[[4]]}]; (* Initial block is (s(3),s(4)) [OR (s(2),s(3)) if using offset 0] *); cfs = Table[s = Drop[s, pos - 1]; ans = Join[{s[[p[n] = pos = seqPosition2[s, #] - 1]]}, #] &[ans], {n, z}]; rcf = Last[Map[Reverse, cfs]] (* A245977 *)
Comments