cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245983 Number of pairs of endofunctions f, g on [n] satisfying g^6(f(i)) = f(i) for all i in [n].

Original entry on oeis.org

1, 1, 10, 267, 12040, 826245, 86252976, 12661148311, 2428606888576, 585229569018921, 172640322717932800, 60933514918456147011, 25283156000087876668416, 12189356237264450125373869, 6769905753950075837079906304, 4297777320612236566890778059375
Offset: 0

Views

Author

Alois P. Heinz, Aug 08 2014

Keywords

Crossrefs

Column k=6 of A245980.

Programs

  • Maple
    with(combinat): M:=multinomial:
    b:= proc(n, k) local l, g; l, g:= [1, 2, 3, 6],
          proc(k, m, i, t) option remember; local d, j; d:= l[i];
            `if`(i=1, n^m, add(M(k, k-(d-t)*j, (d-t)$j)/j!*
             (d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j,
            `if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t),
            `if`(t=0, [][], m/t))))
          end; g(k, n-k, nops(l), 0)
        end:
    a:= n->add(b(n, j)*stirling2(n, j)*binomial(n, j)*j!, j=0..n):
    seq(a(n), n=0..20);