A246009 Length of Collatz cycles '3*n + 1' of prime numbers.
2, 8, 6, 17, 15, 10, 13, 21, 16, 19, 107, 22, 110, 30, 105, 12, 33, 20, 28, 103, 116, 36, 111, 31, 119, 26, 88, 101, 114, 13, 47, 29, 91, 42, 24, 16, 37, 24, 68, 32, 32, 19, 45, 120, 27, 120, 40, 71, 14, 35, 84, 53, 22, 66, 123, 79, 30, 43, 17, 43, 61, 118, 38, 87, 131, 38, 25, 113, 126, 33, 126, 51, 46, 20, 59
Offset: 1
Keywords
Examples
a(1) = {c(1) = prime(1) = 2, 2 mod 2 = 0, c(2) = 2/2 = 1, z=2} = 2; a(3) = {c(1) = prime(3) = 5, 5 mod 2 = 1, c(2) = 3*5 + 1 = 16; 16 mod 2 = 0, c(3) = 16/2 = 8; 8 mod 2 = 0, c(4) = 8/2 = 4; 4 mod 2 = 0, c(5) = 4/2 = 2; 2 mod 2 = 0, c(6) = 2/2 = 1, z=6} = 6.
Links
- Freimut Marschner, Table of n, a(n) for n = 1..100000
Crossrefs
Programs
-
PARI
a(n)=n=prime(n);A=List;while(n != 1,listput(A,n);if(n%2==0,n=n/2,n=3*n+1));listput(A,1);return(#Vec(A)) \\ Edward Jiang, Sep 06 2014
Comments