A246029 a(n) = Product_{i in row n of A245562} prime(i).
1, 2, 2, 3, 2, 4, 3, 5, 2, 4, 4, 6, 3, 6, 5, 7, 2, 4, 4, 6, 4, 8, 6, 10, 3, 6, 6, 9, 5, 10, 7, 11, 2, 4, 4, 6, 4, 8, 6, 10, 4, 8, 8, 12, 6, 12, 10, 14, 3, 6, 6, 9, 6, 12, 9, 15, 5, 10, 10, 15, 7, 14, 11, 13, 2, 4, 4, 6, 4, 8, 6, 10, 4, 8, 8, 12, 6, 12, 10, 14, 4, 8, 8, 12, 8, 16, 12, 20, 6, 12, 12, 18
Offset: 0
Keywords
Examples
From _Omar E. Pol_, Feb 12 2015: (Start) Written as an irregular triangle in which row lengths is A011782: 1; 2; 2,3; 2,4,3,5; 2,4,4,6,3,6,5,7; 2,4,4,6,4,8,6,10,3,6,6,9,5,10,7,11; 2,4,4,6,4,8,6,10,4,8,8,12,6,12,10,14,3,6,6,9,6,12,9,15,5,10,10,15,7,14,11,13; ... Right border gives the noncomposite numbers. This is simply a restatement of the theorem that this sequence is the Run Length Transform of A008578. (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..8191
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
- N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Index entries for sequences related to cellular automata
Crossrefs
Programs
-
Maple
ans:=[]; for n from 0 to 100 do lis:=[]; t1:=convert(n,base,2); L1:=nops(t1); out1:=1; c:=0; for i from 1 to L1 do if out1 = 1 and t1[i] = 1 then out1:=0; c:=c+1; elif out1 = 0 and t1[i] = 1 then c:=c+1; elif out1 = 1 and t1[i] = 0 then c:=c; elif out1 = 0 and t1[i] = 0 then lis:=[c,op(lis)]; out1:=1; c:=0; fi; if i = L1 and c>0 then lis:=[c,op(lis)]; fi; od: a:=mul(ithprime(i), i in lis); ans:=[op(ans),a]; od: ans;
-
Mathematica
f[n_, i_, x_] := f[n, i, x] = Which[n == 0, x, EvenQ[n], f[n/2, i + 1, x], True, f[(n - 1)/2, i, x*Prime[i]]]; a5940[n_] := f[n - 1, 1, 1]; a181819[n_] := Times @@ Prime[FactorInteger[n][[All, 2]]]; a[0] = 1; a[n_] := a181819[a5940[n + 1]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Aug 19 2018, after Antti Karttunen *)
-
Python
from operator import mul from functools import reduce from re import split from sympy import prime def A246029(n): return reduce(mul,(prime(len(d)) for d in split('0+',bin(n)[2:]) if d != '')) if n > 0 else 1 # Chai Wah Wu, Sep 12 2014
Comments