A246032 a(n) = A246031(2^n-1).
1, 26, 124, 1400, 10000, 89504, 707008, 5924480, 47900416, 393069824, 3189761536, 25963397888, 210468531712, 1706090904320, 13803141607936, 111595408530176, 901164713600512, 7271581998320384, 58625571435837952, 472335388734974720, 3803021424555945472, 30602681612309510912, 246127842107210007040
Offset: 0
Keywords
Links
- Shalosh B. Ekhad, Details about A246031 and A246032
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
- N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Index entries for sequences related to cellular automata
Crossrefs
Cf. A246031.
Programs
-
Magma
P
:= PolynomialRing(GF(2),3);g := (1+x+x^2)*(1+y+y^2)*(1+z+z^2)-x*y*z; p := g; for i := 2 to 9 do g := g*g; p := p*g; print(#Terms(p)); end for; // Roman Pearce, Aug 25 2014 -
Maple
# Maple program from N. J. A. Sloane, Aug 21 2014 with improvements from Roman Pearce, Aug 25 2014 # f is a 26-term polynomial, which describes a 3x3x3 cube with the center removed f := expand((1+x+x^2)*(1+y+y^2)*(1+z+z^2)-x*y*z) mod 2; # count nonzero terms in a polynomial C := f->`if`(type(f,`+`),nops(f),1); # Find number of ON cells in CA for generations 2^k-1 for k = 0..M # defined by rule that cell is ON iff number of ON cells in nbd at # time n-1 was odd where nbd is defined by a polynomial f(x, y, z). OddCA2 := proc(f, M) global C; local n, a, i, g, p; g := expand(f) mod 2; p := g; a := [1,C(p)]; map(lprint,a); for n from 2 to M do g := expand(g^2) mod 2; p := expand(p*g) mod 2; a := [op(a), C(p)]; lprint(a[-1]); end do: [seq(a[i], i=1..nops(a))]; end proc: OddCA2(f, 9);
-
Mathematica
f = PolynomialMod[(1+x+x^2)*(1+y+y^2)*(1+z+z^2) - x*y*z // Expand, 2]; c[f_] := If[f[[0]] === Plus, Length[f], 1]; OddCA2[f_, M_] := Module[{n, a, i, g, p}, g = PolynomialMod[Expand[f], 2]; p = g; a = {1, c[p]}; Print[1]; Print[a[[-1]]]; For[n = 2, n <= M, n++, g = PolynomialMod[Expand[g^2], 2]; p = PolynomialMod[Expand[p*g], 2]; a = Append[a, c[p]]; Print[a[[-1]]] ]; a]; OddCA2[f, 9] (* Jean-François Alcover, Jan 20 2018, translated from Maple *)
Formula
The g.f. is
(1 + 6*x - 317*x^2 + 1718*x^3 + 5420*x^4 - 59432*x^5 + 61312*x^6 + 428928*x^7 - 887296*x^8 - 260096*x^9 + 737280*x^10)/((1 - 8*x)*(1 - 12*x - 17*x^2 + 608*x^3 - 856*x^4 - 9920*x^5 + 22576*x^6 + 52992*x^7 - 140032*x^8 - 29696*x^9 + 110592*x^10)),
found by Doron Zeilberger - see the Ekhad-Sloane-Zeilberger paper and the Ekhad link.
Extensions
a(7), a(8) and a(9) computed with Maple 18 and confirmed with MAGMA by Roman Pearce, Aug 25 2014
a(1)-a(9) confirmed by Michael Monagan, Aug 29 2014
a(10) and a(11) from Michael Monagan, Aug 29 2014
a(12) onwards from Doron Zeilberger, Feb 20 2015
Comments