A246034 Number of odd terms in f^n, where f = x^4*y^4 + x^4*y^3 + x^3*y^4 + x^4*y^2 + x^2*y^4 + x^4*y + x^3*y^2 + x^2*y^3 + x*y^4 + x^4 + x^2*y^2 + y^4 + x^3 + x^2*y + x*y^2 + y^3 + x^2 + y^2 + x + y + 1.
1, 21, 21, 85, 21, 233, 85, 321, 21, 441, 233, 761, 85, 1137, 321, 1545, 21, 441, 441, 1785, 233, 2925, 761, 3589, 85, 1785, 1137, 3977, 321, 4549, 1545, 5909, 21, 441, 441, 1785, 441, 4893, 1785, 6741, 233, 4893, 2925, 9949, 761, 11301, 3589, 13181, 85, 1785, 1785
Offset: 0
Keywords
Examples
Here is the neighborhood: [X, X, X, X, X] [X, 0, X, 0, X] [X, X, X, X, X] [X, 0, X, 0, X] [X, X, X, X, X] which contains a(1) = 21 ON cells.
Links
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
- N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Index entries for sequences related to cellular automata
Crossrefs
Programs
-
Maple
C:=f->subs({x=1, y=1}, f); # Find number of ON cells in CA for generations 0 thru M defined by rule # that cell is ON iff number of ON cells in nbd at time n-1 was odd # where nbd is defined by a polynomial or Laurent series f(x, y). OddCA:=proc(f, M) global C; local n, a, i, f2, p; f2:=simplify(expand(f)) mod 2; a:=[]; p:=1; for n from 0 to M do a:=[op(a), C(p)]; p:=expand(p*f2) mod 2; od: lprint([seq(a[i], i=1..nops(a))]); end; f:=x^4*y^4+x^4*y^3+x^3*y^4+x^4*y^2+x^2*y^4+x^4*y+x^3*y^2+x^2*y^3+x*y^4+x^4+ x^2*y^2+y^4+x^3+x^2*y+x*y^2+y^3+x^2+y^2+x+y+1; OddCA(f, 100);
-
Mathematica
f = x^4*y^4 + x^4*y^3 + x^3*y^4 + x^4*y^2 + x^2*y^4 + x^4*y + x^3*y^2 + x^2*y^3 + x*y^4 + x^4 + x^2*y^2 + y^4 + x^3 + x^2*y + x*y^2 + y^3 + x^2 + y^2 + x + y + 1; a[0] = 1; a[n_] := Count[List @@ Expand[f^n] /. {x -> 1, y -> 1}, _?OddQ]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Dec 11 2017 *)
Comments