cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246061 Decimal expansion of lim_{n->infinity} ((1/log(n)^2)*Product_{2 < p < n, p prime} p/(p-2)).

Original entry on oeis.org

1, 2, 0, 1, 3, 0, 3, 5, 5, 9, 9, 6, 7, 3, 6, 2, 2, 4, 1, 2, 4, 7, 5, 5, 5, 9, 5, 9, 2, 0, 7, 3, 8, 3, 4, 8, 2, 4, 5, 3, 8, 3, 8, 4, 4, 9, 4, 2, 7, 1, 1, 3, 0, 8, 5, 1, 8, 1, 9, 5, 5, 9, 7, 4, 1, 4, 8, 0, 0, 9, 9, 7, 7, 9, 4, 3, 7, 7, 5, 2, 2, 5, 9, 6, 7, 0, 6, 4, 3, 1, 8, 4, 8, 6, 1, 9, 7, 6, 0, 8, 8
Offset: 1

Views

Author

Jean-François Alcover, Sep 11 2014

Keywords

Examples

			1.201303559967362241247555959207383482453838449427113...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.1 Hardy-Littlewood constants, p. 86.

Crossrefs

Programs

  • Mathematica
    digits = 101; s[n_] := (1/n)* N[Sum[MoebiusMu[d]*2^(n/d), {d, Divisors[n]}], digits + 60]; C2 = (175/256)*Product[(Zeta[ n]*(1 - 2^(-n))*(1 - 3^(-n))*(1 - 5^(-n))*(1 - 7^(-n)))^(-s[ n]), {n, 2, digits + 60}]; RealDigits[Exp[2*EulerGamma]/(4*C2), 10, digits] // First
  • PARI
    exp(2*Euler)/(4*prodeulerrat(1-1/(p-1)^2, 1, 3)) \\ Amiram Eldar, Apr 27 2025

Formula

Equals exp(2*EulerGamma)/(4*C_2), where C_2 is the twin primes constant A005597.