A246064 A variation of the Farey sequence read by rows; the row of order n is defined by the greatest whole numbers less than or equal to the values generated when the numerators of the Farey sequence (order n) are replaced by n itself.
1, 1, 2, 1, 2, 3, 1, 1, 1, 3, 4, 1, 1, 2, 1, 1, 4, 5, 1, 1, 1, 1, 2, 1, 1, 1, 1, 5, 6, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 6, 7, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 7, 8, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 8
Offset: 1
Examples
As an example, the 4th row of the sequence (n=4) is 4, 1, 1, 2, 1, 1, 4. Triangle starts: 1, 1; 2, 1, 2; 3, 1, 1, 1, 3; 4, 1, 1, 2, 1, 1, 4; 5, 1, 1, 1, 1, 2, 1, 1, 1, 1, 5; ...
Programs
-
J
<. (% A006843)~ n NB. A006843 is assumed to return a list of Farey denominators of order n, as described in the OEIS.
-
PARI
row(n) = {vf = [0]; for (k=1, n, for (m=1, k, vf = concat(vf, m/k); ); ); vf = vecsort(Set(vf)); for (i=1, #vf, print1(n\denominator(vf[i]), ", ")); } \\ Michel Marcus, Sep 04 2014
Formula
Row n of the sequence (sequence of order n) is given by floor(n/A006843(n)).
Comments