A246065 a(n) = Sum_{k=0..n}C(n,k)^2*C(2k,k)/(2k-1), where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!).
-1, 1, 9, 39, 177, 927, 5463, 34857, 234657, 1641471, 11820135, 87080265, 653499135, 4979882385, 38441107305, 300027646647, 2364113123073, 18784242756927, 150351698420247, 1211310469545081, 9816017765368671, 79963826730913809, 654504197331971961, 5380270242617370951
Offset: 0
Keywords
Examples
a(2) = 9 since Sum_{k=0,1,2}C(2,k)^2*C(2k,k)/(2k-1) = -1 + 8 + 6/3 = 9.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..150
- Zhi-Wei Sun, A new kind of numbers and their arithmetic properties, preprint, arXiv:1408.5381 [math.NT], 2014-2018.
Programs
-
Maple
a := n -> -hypergeom([-1/2, -n, -n], [1, 1], 4): seq(simplify(a(n)), n=0..23); # Peter Luschny, Nov 07 2023 ogf := -(1-9*x)^(1/4)*hypergeom([-1/4, 3/4],[1],64*x^3/((1-9*x)*(x-1)^3))/(1-x)^(5/4); series(ogf, x=0, 25); # Mark van Hoeij, Nov 12 2023
-
Mathematica
a[n_]:=Sum[Binomial[n,k]^2*Binomial[2k,k]/(2k-1),{k,0,n}] Table[a[n],{n,0,20}]
Formula
Recurrence (obtained via the Zeilberger algorithm):
9*(n+1)^2*a(n) -(19n^2+58n+63)*a(n+1) + (11n^2+46n+47)*a(n+2)-(n+3)^2*a(n+3) = 0.
a(n) ~ A086618(n)/2 ~ 3^(2*n + 5/2)/(16*Pi*n^2) as n tends to the infinity.
a(n) = -hypergeom([-1/2, -n, -n], [1, 1], 4). - Peter Luschny, Nov 07 2023
Comments