A246138
a(n) = (Sum_{k=0..n-1} A246065(k)) / n^2.
Original entry on oeis.org
-1, 0, 1, 3, 9, 32, 135, 648, 3409, 19176, 113535, 700125, 4463415, 29256120, 196334697, 1344542787, 9371335905, 66335058128, 476022873279, 3457886816997, 25394948961831, 188353304179920, 1409578821465129, 10635308054118792, 80845157085234975
Offset: 1
a(5) = 9 since sum_{k=0}^{5-1}A246065(k) = -1 + 1 + 9 + 39 + 177 = 225 = 5^2*9.
-
ogf := (1-((9*x-1)/(x-1))^(3/4)*hypergeom([-1/4, 3/4],[1],-64*x/(9*x-1)^3/(x-1)))/6;
series(ogf, x=0, 25); # Mark van Hoeij, Nov 12 2023
-
s[n_]:=Sum[Binomial[n,k]^2*Binomial[2k,k]/(2k-1),{k,0,n}]
a[n_]:=Sum[s[k],{k,0,n-1}]/n^2
Table[a[n],{n,1,25}]
A246460
a(n) = (sum_{k=0}^{n-1} (2k+1)*C(n-1,k)^2*C(n+k,k)^2)/n^2, where C(n,k) denotes the binomial coefficient n!/(k!(n-k)!).
Original entry on oeis.org
1, 7, 77, 1211, 23009, 489035, 11203765, 270937315, 6825612185, 177559028087, 4739821161173, 129244697791951, 3587524535220001, 101099089948850323, 2886373390151379397, 83343790441133767475, 2430567530705659113545, 71508611747063572974095, 2120357936904537499679125, 63315310358625743871987019
Offset: 1
a(2) = 7 since sum_{k=0,1} (2k+1)C(1,k)^2*C(2+k,k)^2 = 1 + 3*3^2 = 28 = 2^2*7.
-
A246460:=n->add((2*k+1)*binomial(n-1,k)^2*binomial(n+k,k)^2/n^2, k=0..n-1): seq(A246460(n), n=1..20); # Wesley Ivan Hurt, Aug 26 2014
-
a[n_]:=Sum[(2k+1)*Binomial[n-1,k]^2*Binomial[n+k,k]^2,{k,0,n-1}]/n^2
Table[a[n],{n,1,20}]
A246459
a(n) = Sum_{k=0..n} C(n,k)^2*C(2k,k)*(2k+1), where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!).
Original entry on oeis.org
1, 7, 55, 465, 4047, 35673, 316521, 2819295, 25173855, 225157881, 2016242265, 18070920255, 162071863425, 1454320387575, 13055422263255, 117237213829953, 1053070838993151, 9461217421304505, 85019389336077225, 764113545253570191, 6868417199986308129
Offset: 0
a(2) = 55 since Sum_{k=0,1,2} C(2,k)^2*C(2k,k)(2k+1) = 1 + 8*3 + 6*5 = 55.
-
A246459:=n->add(binomial(n,k)^2*binomial(2*k,k)*(2*k+1), k=0..n): seq(A246459(n), n=0..20); # Wesley Ivan Hurt, Aug 26 2014
-
a[n_]:=Sum[Binomial[n,k]^2*Binomial[2k,k](2k+1),{k,0,n}]
Table[a[n],{n,0,20}]
A246511
a(n) = (Sum_{k=0..n-1} (-1)^k*(2k+1)*C(n-1,k)^2*C(n+k,k)^2)/n, where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!).
Original entry on oeis.org
1, -13, 103, 219, -26139, 503957, -4066061, -54914149, 2550230113, -43157232273, 192777017511, 10118180981037, -318814450789587, 4344955121014089, 6807591584551563, -1781238363905009253, 42912636577174295769, -425791821468024981709, -5452095049517604924017, 305524943325956601071159
Offset: 1
a(2) = -13 since Sum_{k=0,1}(-1)^k*(2k+1)C(1,k)^2*C(2+k,k)^2 = 1 - 3*3^2 = 2*(-13).
-
a:= n -> add((-1)^k*(2*k+1)*binomial(n-1,k)^2*binomial(n+k,k)^2,k=0..n-1)/n:
seq(a(n),n=1..40); # Robert Israel, Aug 28 2014
-
a[n_]:=Sum[(-1)^k*(2k+1)*Binomial[n-1,k]^2*Binomial[n+k,k]^2,{k,0,n-1}]/n
Table[a[n],{n,1,20}]
A246461
a(n) = Sum_{k=0..n} ((2k+1)*C(n,k)*C(n+k,k))^2, where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!).
Original entry on oeis.org
1, 37, 1225, 43397, 1563401, 56309885, 2020496185, 72190600165, 2569004841385, 91095128385485, 3220006254279233, 113505318773615741, 3991330807880182105, 140050346341652428141, 4904787249549605102233, 171480516047539645266725
Offset: 0
a(1) = 37 since Sum_{k=0..1} ((2k+1)*C(1,k)*C(1+k,k))^2 = 1^2 + (3*2)^2 = 37.
-
A246461:=n->add(((2*k+1)*binomial(n,k)*binomial(n+k,k))^2, k=0..n): seq(A246461(n), n=0..20); # Wesley Ivan Hurt, Aug 26 2014
-
a[n_]:=Sum[((2k+1)*Binomial[n,k]*Binomial[n+k,k])^2,{k,0,n}]
Table[a[n],{n,0,15}]
A246462
a(n) = Sum_{k=0..n} (2k+1)*C(n,k)^2*C(n+k,k)^2, where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!).
Original entry on oeis.org
1, 13, 289, 7733, 223001, 6689045, 205569505, 6422252485, 203029535305, 6476057609045, 208013166524153, 6718923443380109, 218021269879802377, 7101635058978727909, 232072490781790669153, 7604916953685880646885
Offset: 0
a(1) = 13 since Sum_{k=0..1} (2k+1)*C(1,k)^2*C(1+k,k)^2 = 1 + 3*2^2 = 13.
-
A246462:=n->add((2*k+1)*binomial(n,k)^2*binomial(n+k,k)^2, k=0..n): seq(A246462(n), n=0..20); # Wesley Ivan Hurt, Aug 27 2014
-
a[n_]:=Sum[(2k+1)*Binomial[n,k]^2*Binomial[n+k,k]^2,{k,0,n}]
Table[a[n],{n,0,15}]
A246512
a(n) = (sum_{k=0}^{n-1}(3k^2+3k+1)*C(n-1,k)^2*C(n+k,k)^2)/n^3, where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!).
Original entry on oeis.org
1, 8, 87, 1334, 25045, 529080, 12076435, 291307490, 7325385345, 190294925864, 5074233846583, 138240914882394, 3834434331534781, 107990908896551192, 3081524055740420811, 88938694296657330170, 2592715751635344852505, 76252823735941187830920, 2260342454730542009915455, 67476975730679069406101870
Offset: 1
a(2) = 8 since sum_{k=0,1} (3k^2+3k+1)C(1,k)^2*C(2+k,k)^2 = 1 + 7*3^2 = 64 = 2^3*8.
-
a[n_]:=Sum[(3k^2+3k+1)*(Binomial[n-1,k]Binomial[n+k,k])^2,{k,0,n-1}]/(n^3)
Table[a[n],{n,1,20}]
-
a(n) = sum(k=0, n-1, (3*k^2+3*k+1)*binomial(n-1,k)^2*binomial(n+k,k)^2) /n^3; \\ Michel Marcus, Dec 24 2021
A367024
Triangle read by rows, T(n, k) = [x^k] -hypergeom([-1/2, -n, -n], [1, 1], 4*x).
Original entry on oeis.org
-1, -1, 2, -1, 8, 2, -1, 18, 18, 4, -1, 32, 72, 64, 10, -1, 50, 200, 400, 250, 28, -1, 72, 450, 1600, 2250, 1008, 84, -1, 98, 882, 4900, 12250, 12348, 4116, 264, -1, 128, 1568, 12544, 49000, 87808, 65856, 16896, 858, -1, 162, 2592, 28224, 158760, 444528, 592704, 342144, 69498, 2860
Offset: 0
Triangle T(n, k) starts:
[0] -1;
[1] -1, 2;
[2] -1, 8, 2;
[3] -1, 18, 18, 4;
[4] -1, 32, 72, 64, 10;
[5] -1, 50, 200, 400, 250, 28;
[6] -1, 72, 450, 1600, 2250, 1008, 84;
[7] -1, 98, 882, 4900, 12250, 12348, 4116, 264;
[8] -1, 128, 1568, 12544, 49000, 87808, 65856, 16896, 858;
[9] -1, 162, 2592, 28224, 158760, 444528, 592704, 342144, 69498, 2860;
-
p := n -> -hypergeom([-1/2, -n, -n], [1, 1], 4*x):
T := (n, k) -> coeff(simplify(p(n)), x, k):
seq(seq(T(n, k), k = 0..n), n = 0..9);
Showing 1-8 of 8 results.
Comments