A246542
a(n) = 2/n^2*( sum_{k=0..n-1} (2*k+1)*C(n-1,k)^2*C(n+k,k) ), where C(m,k) denotes the binomial coefficient m!/(k!*(m-k)!).
Original entry on oeis.org
2, 5, 22, 132, 918, 6981, 56390, 475796, 4149286, 37133043, 339307098, 3154030050, 29741815998, 283896719073, 2738445478758, 26656533873204, 261561469613190, 2584718580416919, 25703179602581234, 257046296680889600, 2583719988283365322, 26090463844931102715, 264570229302222957162, 2693187696469413499902, 27511970457139362253598
Offset: 1
a(2) = 5 since 2/2^2*( sum_{k=0,1} (2k+1)*C(1,k)^2*C(2+k,k) ) = 1/2*(1+3*3) = 5.
-
a[n_] := Sum[(2 k + 1)Binomial[n - 1, k]^2 Binomial[n + k, k], {k, 0, n - 1}] 2/n^2
Table[a[n], {n, 1, 25}]
A246512
a(n) = (sum_{k=0}^{n-1}(3k^2+3k+1)*C(n-1,k)^2*C(n+k,k)^2)/n^3, where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!).
Original entry on oeis.org
1, 8, 87, 1334, 25045, 529080, 12076435, 291307490, 7325385345, 190294925864, 5074233846583, 138240914882394, 3834434331534781, 107990908896551192, 3081524055740420811, 88938694296657330170, 2592715751635344852505, 76252823735941187830920, 2260342454730542009915455, 67476975730679069406101870
Offset: 1
a(2) = 8 since sum_{k=0,1} (3k^2+3k+1)C(1,k)^2*C(2+k,k)^2 = 1 + 7*3^2 = 64 = 2^3*8.
-
a[n_]:=Sum[(3k^2+3k+1)*(Binomial[n-1,k]Binomial[n+k,k])^2,{k,0,n-1}]/(n^3)
Table[a[n],{n,1,20}]
-
a(n) = sum(k=0, n-1, (3*k^2+3*k+1)*binomial(n-1,k)^2*binomial(n+k,k)^2) /n^3; \\ Michel Marcus, Dec 24 2021
A246567
a(n) = (sum_{k=0}^{n-1}C(n-1,k)^2*C(-n-1,k)^2/(4*k^2-1))/n, where C(x,k) refers to binomial(x,k).
Original entry on oeis.org
-1, 1, 9, 61, 587, 7575, 117485, 2057365, 39314175, 802816213, 17275712297, 387886408443, 9020881956707, 216101556811603, 5309497149531957, 133334756362738885, 3412887111988377575, 88838285028658754625, 2347236720247792005665, 62849602943515066525633
Offset: 1
a(2) = 1 since 1/2*sum_{k=0,1}C(1,k)^2*C(-3,k)^2/(4*k^2-1) = 1/2*(-1+9/3) = 1.
-
A246567:=n->add((binomial(n-1,k)*binomial(-n-1,k))^2/(4*k^2-1), k=0..n-1)/n: seq(A246567(n), n=1..20);
-
a[n_]:=Sum[(Binomial[n-1,k]*Binomial[-n-1,k])^2/(4*k^2-1),{k,0,n-1}]/n
Table[a[n],{n,1,20}]
-
a(n) = sum(k=0, n-1, binomial(n-1,k)^2*binomial(n+k,k)^2/(4*k^2-1))/n; \\ Michel Marcus, Dec 24 2021
A246875
a(n) = (Sum_{k=0..n-1} C(n-1,k)^2*C(-n-1,k)^2/C(k+2,2))/n.
Original entry on oeis.org
1, 2, 13, 134, 1783, 27950, 491335, 9401390, 192033565, 4131488426, 92723165533, 2155279960586, 51602299168639, 1267128734047142, 31803430252162579, 813628992468938750, 21168533016938471665, 559044288633621863810, 14962460440143262653685, 405299365266569619086462
Offset: 1
a(2) = 2 since (Sum_{k=0..1} C(2-1,k)^2*C(-2-1,k)^2/C(2+k,2))/2 = (1 + (-3)^2/3)/2 = 2.
-
a[n_]:=Sum[(Binomial[n-1,k]*Binomial[-n-1,k])^2/Binomial[k+2,2],{k,0,n-1}]/n
Table[a[n],{n,1,20}]
Table[HypergeometricPFQ[{1-n,1-n,1+n,1+n},{1,1,3},1]/n,{n,1,10}] (* Benedict W. J. Irwin, Apr 04 2017 *)
-
a(n) = sum(k=0, n - 1, (binomial(n - 1, k) * binomial(-n - 1, k))^2/binomial(k + 2, 2))/n; \\ Indranil Ghosh, Apr 04 2017
Showing 1-4 of 4 results.
Comments