A246513
a(n) = (4/n^2)*( Sum_{k=0..n-1} k*A246459(k) ).
Original entry on oeis.org
0, 7, 52, 378, 2832, 21785, 171036, 1364391, 11023264, 89985681, 740894700, 6144227430, 51267563280, 430045297695, 3623966778180, 30662599042530, 260367332354496, 2217928838577641, 18947382204700044, 162281586037920126
Offset: 1
a(2) = 7 since (4/2^2)*( Sum_{k=0..1} k*A246459(k) ) = A246459(1) = 7.
-
h := n -> hypergeom([1/2, 1 - n, -n], [2, 2], 4):
a := n -> (n - 1) * ((n + 1)^2 * h(n) / n - n * h(n - 1)):
seq(simplify(a(n)), n = 1..20); # Peter Luschny, Nov 06 2023
ogf := (((-54*x^4+18*x^3+30*x^2+6*x)*hypergeom([4/3, 4/3],[2],-27*x*(x-1)^2/(9*x-1)^2)+(-1701*x^3+783*x^2-111*x+5)*hypergeom([1/3, 1/3],[1],-27*x*(x-1)^2/(9*x-1)^2))/(1-9*x)^(8/3) - 5)/6;
series(ogf, x=0, 25); # Mark van Hoeij, Nov 12 2023
-
s[n_] := Sum[Binomial[n, k]^2 Binomial[2 k, k] (2 k + 1), {k, 0, n}]
a[n_] := Sum[k s[k], {k, 0, n-1}] 4/n^2
Table[a[n], {n, 1, 20}]
A246460
a(n) = (sum_{k=0}^{n-1} (2k+1)*C(n-1,k)^2*C(n+k,k)^2)/n^2, where C(n,k) denotes the binomial coefficient n!/(k!(n-k)!).
Original entry on oeis.org
1, 7, 77, 1211, 23009, 489035, 11203765, 270937315, 6825612185, 177559028087, 4739821161173, 129244697791951, 3587524535220001, 101099089948850323, 2886373390151379397, 83343790441133767475, 2430567530705659113545, 71508611747063572974095, 2120357936904537499679125, 63315310358625743871987019
Offset: 1
a(2) = 7 since sum_{k=0,1} (2k+1)C(1,k)^2*C(2+k,k)^2 = 1 + 3*3^2 = 28 = 2^2*7.
-
A246460:=n->add((2*k+1)*binomial(n-1,k)^2*binomial(n+k,k)^2/n^2, k=0..n-1): seq(A246460(n), n=1..20); # Wesley Ivan Hurt, Aug 26 2014
-
a[n_]:=Sum[(2k+1)*Binomial[n-1,k]^2*Binomial[n+k,k]^2,{k,0,n-1}]/n^2
Table[a[n],{n,1,20}]
A246511
a(n) = (Sum_{k=0..n-1} (-1)^k*(2k+1)*C(n-1,k)^2*C(n+k,k)^2)/n, where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!).
Original entry on oeis.org
1, -13, 103, 219, -26139, 503957, -4066061, -54914149, 2550230113, -43157232273, 192777017511, 10118180981037, -318814450789587, 4344955121014089, 6807591584551563, -1781238363905009253, 42912636577174295769, -425791821468024981709, -5452095049517604924017, 305524943325956601071159
Offset: 1
a(2) = -13 since Sum_{k=0,1}(-1)^k*(2k+1)C(1,k)^2*C(2+k,k)^2 = 1 - 3*3^2 = 2*(-13).
-
a:= n -> add((-1)^k*(2*k+1)*binomial(n-1,k)^2*binomial(n+k,k)^2,k=0..n-1)/n:
seq(a(n),n=1..40); # Robert Israel, Aug 28 2014
-
a[n_]:=Sum[(-1)^k*(2k+1)*Binomial[n-1,k]^2*Binomial[n+k,k]^2,{k,0,n-1}]/n
Table[a[n],{n,1,20}]
A246461
a(n) = Sum_{k=0..n} ((2k+1)*C(n,k)*C(n+k,k))^2, where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!).
Original entry on oeis.org
1, 37, 1225, 43397, 1563401, 56309885, 2020496185, 72190600165, 2569004841385, 91095128385485, 3220006254279233, 113505318773615741, 3991330807880182105, 140050346341652428141, 4904787249549605102233, 171480516047539645266725
Offset: 0
a(1) = 37 since Sum_{k=0..1} ((2k+1)*C(1,k)*C(1+k,k))^2 = 1^2 + (3*2)^2 = 37.
-
A246461:=n->add(((2*k+1)*binomial(n,k)*binomial(n+k,k))^2, k=0..n): seq(A246461(n), n=0..20); # Wesley Ivan Hurt, Aug 26 2014
-
a[n_]:=Sum[((2k+1)*Binomial[n,k]*Binomial[n+k,k])^2,{k,0,n}]
Table[a[n],{n,0,15}]
A246462
a(n) = Sum_{k=0..n} (2k+1)*C(n,k)^2*C(n+k,k)^2, where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!).
Original entry on oeis.org
1, 13, 289, 7733, 223001, 6689045, 205569505, 6422252485, 203029535305, 6476057609045, 208013166524153, 6718923443380109, 218021269879802377, 7101635058978727909, 232072490781790669153, 7604916953685880646885
Offset: 0
a(1) = 13 since Sum_{k=0..1} (2k+1)*C(1,k)^2*C(1+k,k)^2 = 1 + 3*2^2 = 13.
-
A246462:=n->add((2*k+1)*binomial(n,k)^2*binomial(n+k,k)^2, k=0..n): seq(A246462(n), n=0..20); # Wesley Ivan Hurt, Aug 27 2014
-
a[n_]:=Sum[(2k+1)*Binomial[n,k]^2*Binomial[n+k,k]^2,{k,0,n}]
Table[a[n],{n,0,15}]
A246512
a(n) = (sum_{k=0}^{n-1}(3k^2+3k+1)*C(n-1,k)^2*C(n+k,k)^2)/n^3, where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!).
Original entry on oeis.org
1, 8, 87, 1334, 25045, 529080, 12076435, 291307490, 7325385345, 190294925864, 5074233846583, 138240914882394, 3834434331534781, 107990908896551192, 3081524055740420811, 88938694296657330170, 2592715751635344852505, 76252823735941187830920, 2260342454730542009915455, 67476975730679069406101870
Offset: 1
a(2) = 8 since sum_{k=0,1} (3k^2+3k+1)C(1,k)^2*C(2+k,k)^2 = 1 + 7*3^2 = 64 = 2^3*8.
-
a[n_]:=Sum[(3k^2+3k+1)*(Binomial[n-1,k]Binomial[n+k,k])^2,{k,0,n-1}]/(n^3)
Table[a[n],{n,1,20}]
-
a(n) = sum(k=0, n-1, (3*k^2+3*k+1)*binomial(n-1,k)^2*binomial(n+k,k)^2) /n^3; \\ Michel Marcus, Dec 24 2021
A246761
a(n) = Sum_{k=0..n} C(n,k)^3 * C(2k,k) * C(3k,k) * (3k + 1).
Original entry on oeis.org
1, 25, 823, 34459, 1663267, 85847347, 4598058505, 252738855901, 14170006731643, 806810379495379, 46503528950782309, 2707097765891635585, 158884136607368717797, 9389663462839346537221, 558176792747732603265463, 33349982885530909490561203
Offset: 0
a(1) = 25 since Sum_{k=0..1} C(1,k)^3 * C(2k,k) * C(3k,k)*(3k+1) = 1 + 2*3*4 = 25.
-
a[n_]:=Sum[Binomial[n,k]^3*Binomial[2k,k]Binomial[3k,k](3k+1),{k,0,n}]
Table[a[n],{n,0,15}]
Showing 1-7 of 7 results.
Comments