cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A367022 Triangle read by rows, T(n, k) = [x^k] p(n), where p(n) = 4^n * hypergeom([1/2, -n - 1, -n], [2, 2], x).

Original entry on oeis.org

1, 4, 1, 16, 12, 2, 64, 96, 48, 5, 256, 640, 640, 200, 14, 1024, 3840, 6400, 4000, 840, 42, 4096, 21504, 53760, 56000, 23520, 3528, 132, 16384, 114688, 401408, 627200, 439040, 131712, 14784, 429, 65536, 589824, 2752512, 6021120, 6322176, 3161088, 709632, 61776, 1430
Offset: 0

Views

Author

Peter Luschny, Nov 06 2023

Keywords

Examples

			Triangle T(n, k) starts:
  [0]     1;
  [1]     4,      1;
  [2]    16,     12,       2;
  [3]    64,     96,      48,       5;
  [4]   256,    640,     640,     200,      14;
  [5]  1024,   3840,    6400,    4000,     840,      42;
  [6]  4096,  21504,   53760,   56000,   23520,    3528,    132;
  [7] 16384, 114688,  401408,  627200,  439040,  131712,  14784,   429;
  [8] 65536, 589824, 2752512, 6021120, 6322176, 3161088, 709632, 61776, 1430;
		

Crossrefs

Cf. A038845 (column 1), A128088, A005802, A246513, A001263.

Programs

  • Maple
    p := n -> 4^n*hypergeom([1/2, -n - 1, -n], [2, 2], x):
    T := (n, k) -> coeff(simplify(p(n)), x, k):
    seq(seq(T(n, k), k = 0..n), n = 0..8);
  • Mathematica
    T[n_,k_]:=4^(n-k)*Binomial[n,k]*Binomial[n+1,k]*Binomial[2*k,k]/(k+1)^2;Flatten[Table[T[n,k],{n,0,8},{k,0,n}]] (* Detlef Meya, Nov 20 2023 *)

Formula

From Detlef Meya, Nov 20 2023: (Start)
T(n, k) = 4^(n - k)*binomial(n, k)*binomial(n+1, k)*binomial(2*k, k)/(k + 1)^2.
T(n, k) = A001263(n+1, k+1)*4^(n - k)*binomial(2*k, k)/(k + 1). (End)
Showing 1-1 of 1 results.