A246069 Number of maximal classes determined by permutations.
0, 1, 1, 3, 6, 35, 120, 105, 1120, 19089, 362880, 133595, 39916800, 148397535, 458313856, 2027025, 1307674368000, 6133352225, 355687428096000, 40549021532019, 4139906028544000, 464463124401214575, 51090942171709440000, 1173011341727225
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..450
- Ivo Rosenberg, The number of maximal closed classes in the set of functions over a finite domain, J. Combinatorial Theory Ser. A 14 (1973), 1-7.
- Ivo Rosenberg and N. J. A. Sloane, Correspondence, 1971
Crossrefs
Cf. A002826.
Programs
-
Maple
a:= n -> add(n!/((n/p)! * p^(n/p) * (p-1)), p = numtheory:-factorset(n)): seq(a(n), n=1..100); # Robert Israel, Aug 27 2014
-
Mathematica
a[n_] := If[n == 1, 0, Sum[n!/((n/p)! p^(n/p) (p-1)), {p, FactorInteger[n][[All, 1]]}]]; Array[a, 100] (* Jean-François Alcover, Mar 22 2019, after Robert Israel *)
Formula
a(n) = sum(n! / (m! * p^m * (p-1)), n = p * m, p prime). (corrected by Robert Israel, Aug 27 2014)
Comments