cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246072 Number A(n,k) of permutations p on [2n] satisfying p^k(i) = i for all i in [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 1, 24, 1, 2, 2, 720, 1, 1, 10, 6, 40320, 1, 2, 10, 84, 24, 3628800, 1, 1, 16, 108, 1032, 120, 479001600, 1, 2, 2, 264, 1800, 17040, 720, 87178291200, 1, 1, 18, 150, 6672, 47520, 359280, 5040, 20922789888000
Offset: 0

Views

Author

Alois P. Heinz, Aug 12 2014

Keywords

Comments

Column k=2 is n! * A005425(n), column k=3 is n! * A242054(n). - Vaclav Kotesovec, Aug 13 2014

Examples

			A(2,3) = 10: (1,2,3,4), (1,2,4,3), (1,3,4,2), (1,4,2,3), (2,3,1,4), (2,4,3,1), (3,1,2,4), (3,2,4,1), (4,1,3,2), (4,2,1,3).
a(2,4) = 16: (1,2,3,4), (1,2,4,3), (1,3,2,4), (1,4,3,2), (2,1,3,4), (2,1,4,3), (2,3,4,1), (2,4,1,3), (3,1,4,2), (3,2,1,4), (3,4,1,2), (3,4,2,1), (4,1,2,3), (4,2,3,1), (4,3,1,2), (4,3,2,1).
A(2,5) = 2: (1,2,3,4), (1,2,4,3).
A(3,1) = 6: (1,2,3,4,5,6), (1,2,3,4,6,5), (1,2,3,5,4,6), (1,2,3,5,6,4), (1,2,3,6,4,5), (1,2,3,6,5,4).
Square array A(n,k) begins:
0 :        1,   1,     1,     1,      1,      1, ...
1 :        2,   1,     2,     1,      2,      1, ...
2 :       24,   2,    10,    10,     16,      2, ...
3 :      720,   6,    84,   108,    264,    150, ...
4 :    40320,  24,  1032,  1800,   6672,   2424, ...
5 :  3628800, 120, 17040, 47520, 241440, 109200, ...
		

Crossrefs

Columns k=0-1 give: A010050, A000142. Main diagonal gives A246073.
Cf. A005425, A242054, A246070 (the same for endofunctions).

Programs

  • Maple
    with(numtheory): with(combinat): M:=multinomial:
    b:= proc(n, k, p) local l, g; l, g:= sort([divisors(p)[]]),
          proc(k, m, i, t) option remember; local d, j; d:= l[i];
            `if`(i=1, m!, add(M(k, k-(d-t)*j, (d-t)$j)/j!*
             (d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j,
            `if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t),
            `if`(t=0, [][], m/t))))
          end; g(k, n-k, nops(l), 0)
        end:
    A:= (n, k)-> `if`(k=0, (2*n)!, b(2*n, n, k)):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); M = multinomial; b[n_, k_, p_] := b[n, k, p] = Module[{l, g}, l = Sort[Divisors[p]]; g[k0_, m_, i_, t_] := g[k0, m, i, t] = Module[{d}, d = l[[i]]; If[i == 1, m!, Sum[ M[k0, Join[{k0-(d-t)*j}, Table[d-t, {j}]]]/j!*(d-1)!^j*M[m, Join[{m-t*j}, Table[t, {j}]]]*If[d-t == 1, g[k0-(d-t)*j, m-t*j, i-1, 0], g[k0-(d-t)*j, m-t*j, i, t+1]], {j, 0, Min[k0/(d-t), If[t == 0, Infinity, m/t]]}]]]; g[k, n-k, Length[l], 0]]; A[n_, k_] := If[k == 0, (2*n)!, b[2*n, n, k]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jan 06 2015, after Alois P. Heinz *)