A246109 Number of inequivalent 8 X 8 matrices with entries from [n], where equivalence means permutations of rows or columns.
0, 1, 14685630688, 2130536585704570302966, 209493560585995285291677153144, 333504381764054807093590006199733915, 38963096281905114770318673967657388979120, 750304814691805977574386038534306614497574954, 3861175753082201291221743022346066208381644388448
Offset: 0
Keywords
Links
Crossrefs
Row n=8 of A246106.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [[]], `if`(i<1, [], [b(n, i-1)[], seq(map(p->[p[], [i, j]], b(n-i*j, i-1))[], j=1..n/i)])) end: a:= proc(n) unapply(add(add(x^add(add(i[2]*j[2]* igcd(i[1], j[1]), j=t), i=s) /mul(i[1]^i[2]*i[2]!, i=s) /mul(i[1]^i[2]*i[2]!, i=t), t=b(n$2)), s=b(n$2)), x) end(8): seq(a(n), n=0..10);
Formula
a(n) = 1/8!^2*(n^62 +56*n^54 +784*n^48 +644*n^46 +11760*n^42 +6272*n^40 +48020*n^38 +36064*n^36 +309680*n^34 +176400*n^32 +1060423*n^30 +423360*n^28 +4877264*n^26 +4845120*n^24 +14721560*n^22 +17144512*n^20 +41692336*n^18 +41106688*n^16 +123789552*n^14 +139448064*n^12 +197401344*n^10 +190027776*n^8 +288610560*n^6 +239339520*n^4 +235468800*n^2 +85155840)*n^2.