A246118 T(n,k), for n,k >= 1, is the number of partitions of the set [n] into k blocks, where, if the blocks are arranged in order of their minimal element, the odd-indexed blocks are all singletons.
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 11, 6, 1, 0, 1, 5, 26, 23, 9, 1, 0, 1, 6, 57, 72, 50, 12, 1, 0, 1, 7, 120, 201, 222, 86, 16, 1, 0, 1, 8, 247, 522, 867, 480, 150, 20, 1, 0, 1, 9, 502, 1291, 3123, 2307, 1080, 230, 25, 1, 0, 1, 10, 1013, 3084, 10660, 10044, 6627, 2000, 355, 30, 1
Offset: 1
Examples
Triangle begins n\k| 1 2 3 4 5 6 7 8 1 | 1 2 | 0 1 3 | 0 1 1 4 | 0 1 2 1 5 | 0 1 3 4 1 6 | 0 1 4 11 6 1 7 | 0 1 5 26 23 9 1 8 | 0 1 6 57 72 50 12 1 ... Connection constants: Row 6 = (0, 1, 4, 11, 6, 1) so x^6 = x^2 + 4*x^2*(x - 1) + 11*x^2*(x - 1)^2 + 6*x^2*(x - 1)^2*(x - 2) + x^2*(x - 1)^2*(x - 2)^2. Row 5 = [0, 1, 3, 4, 1]. There are 9 set partitions of {1,2,3,4,5} of the type described in the Name section: = = = = = = = = = = = = = = = = = = = = = = = = = = = = = Number of Set partitions Count blocks = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 2 {1}{2,3,4,5} 1 3 {1}{2,4,5}{3}, {1}{2,3,5}{4}, {1}{2,3,4}{5} 3 4 {1}{2,3}{4}{5}, {1}{2,4}{3}{5}, {1}{2,5}{3}{4}, {1}{2}{3}{4,5} 4 5 {1}{2}{3}{4}{5} 1
Links
- Yue Cai and Margaret Readdy, Negative q-Stirling numbers, arXiv:1506.03249 [math.CO], 2015.
- Emrah Kiliç and Helmut Prodinger, Identities with Squares of Binomial Coefficients: an Elementary and Explicit Approach, Publications de l'Institut Mathématique (Beograd) (N.S.), Vol.99(113) (2016), 243-248. See p. 248.
- Erich Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Tech Report TR 99-05, 1999.
- E. Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Discrete Math. 239 (2001) 33-51.
Crossrefs
Programs
-
Mathematica
Flatten[Table[Table[Sum[StirlingS2[j,Floor[k/2]] * StirlingS2[n-j-1,Floor[(k-1)/2]],{j,0,n-1}],{k,1,n}],{n,1,12}]] (* Vaclav Kotesovec, Feb 09 2015 *)
Formula
T(n,k) = Sum_{i = 0..n-1} Stirling2(i, floor(k/2))*Stirling2(n-i-1, floor((k - 1)/2)) for n,k >= 1.
Recurrence equation: T(1,1) = 1, T(n,1) = 0 for n >= 2; T(n,k) = 0 for k > n; otherwise T(n,k) = floor(k/2)*T(n-1,k) + T(n-1,k-1).
O.g.f. (with an extra 1): A(z) = 1 + Sum_{k >= 1} (x*z)^k/( ( Product_{i = 1..floor((k-1)/2)} (1 - i*z) ) * ( Product_{i = 1..floor(k/2)} (1 - i*z) ) ) = 1 + x*z + x^2*z^2 + (x^2 + x^3)*z^3 + (x^2 + 2*x^3 + x^4)*z^4 + .... satisfies A(z) = 1 + x*z + x^2*z^2/(1 - z)*A(z/(1 - z)).
k-th column generating function z^k/( ( Product_{i = 1..floor((k-1)/2)} (1 - i*z) ) * ( Product_{i = 1..floor(k/2)} (1 - i*z) ) ).
Recurrence for row polynomials: R(n,x) = x^2*Sum_{k = 0..n-2} binomial(n-2,k)*R(k,x) with initial conditions R(0,x) = 1 and R(1,x) = x. Compare with the recurrence satisfied by the Bell polynomials: Bell(n,x) = x*Sum_{k = 0..n-1} binomial(n-1,k) * Bell(k,x).
Row sums are A007476.
Comments