cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246127 Limiting block extension of the (2,1)-version of the infinite Fibonacci word A014675 with first term as initial block.

Original entry on oeis.org

2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2
Offset: 0

Views

Author

Keywords

Comments

Suppose S = (s(0), s(1), s(2), ...) is an infinite sequence such that every finite block of consecutive terms occurs infinitely many times in S. (It is assumed that A014675 is such a sequence.) Let B = B(m,k) = (s(m), s(m+1),...s(m+k)) be such a block, where m >= 0 and k >= 0. Let m(1) be the least i > m such that (s(i), s(i+1),...,s(i+k)) = B(m,k), and put B(m(1),k+1) = (s(m(1)), s(m(1)+1),...s(m(1)+k+1)). Let m(2) be the least i > m(1) such that (s(i), s(i+1),...,s(i+k)) = B(m(1),k+1), and put B(m(2),k+2) = (s(m(2)), s(m(2)+1),...s(m(2)+k+2)). Continuing in this manner gives a sequence of blocks B'(n) = B(m(n),k+n), so that for n >= 0, B'(n+1) comes from B'(n) by suffixing a single term; thus the limit of B'(n) is defined; we call it the "limiting block extension of S with initial block B(m,k)", denoted by S^.
...
The sequence (m(i)), where m(0) = 0, is the "index sequence for limit-block extending S with initial block B(m,k)", as in A246128.
...
Limiting block extensions are analogous to limit-reverse sequences, S*, defined at A245920. The essential difference is that S^ is formed by extending each new block one term to the right, whereas S* is formed by extending each new block one term to the left (and then reversing).

Examples

			S = the infinite Fibonacci word A014675, with B = (s(0)); that is, (m,k) = (0,0)
S = (2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,...)
B'(0) = (2)
B'(1) = (2,2)
B'(2) = (2,2,1)
B'(3) = (2,2,1,2)
B'(4) = (2,2,1,2,1)
B'(5) = (2,2,1,2,1,2)
S^ = (2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2,...),
with index sequence (0,2,7,10,15,...)
		

Crossrefs

Programs

  • Mathematica
    seqPosition1[list_, seqtofind_] := If[Length[#] > Length[list], {}, Last[Last[      Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 1]]]] &[seqtofind]; s = Differences[Table[Floor[n*GoldenRatio], {n, 10000}]]; t = {{2}}; p[0] = seqPosition1[s, Last[t]]; s = Drop[s, p[0]]; Off[Last::nolast]; n = 1; While[(p[n] = seqPosition1[s, Last[t]]) > 0, (AppendTo[t, Take[s, {#, # + Length[Last[t]]}]]; s = Drop[s, #]) &[p[n]]; n++]; On[Last::nolast]; t1 = Last[t] (*A246127*)
    q = -1 + Accumulate[Table[p[k], {k, 0, n - 1}]] (*A246128*)