A246127 Limiting block extension of the (2,1)-version of the infinite Fibonacci word A014675 with first term as initial block.
2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2
Offset: 0
Keywords
Examples
S = the infinite Fibonacci word A014675, with B = (s(0)); that is, (m,k) = (0,0) S = (2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,...) B'(0) = (2) B'(1) = (2,2) B'(2) = (2,2,1) B'(3) = (2,2,1,2) B'(4) = (2,2,1,2,1) B'(5) = (2,2,1,2,1,2) S^ = (2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2,...), with index sequence (0,2,7,10,15,...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..300
Programs
-
Mathematica
seqPosition1[list_, seqtofind_] := If[Length[#] > Length[list], {}, Last[Last[ Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 1]]]] &[seqtofind]; s = Differences[Table[Floor[n*GoldenRatio], {n, 10000}]]; t = {{2}}; p[0] = seqPosition1[s, Last[t]]; s = Drop[s, p[0]]; Off[Last::nolast]; n = 1; While[(p[n] = seqPosition1[s, Last[t]]) > 0, (AppendTo[t, Take[s, {#, # + Length[Last[t]]}]]; s = Drop[s, #]) &[p[n]]; n++]; On[Last::nolast]; t1 = Last[t] (*A246127*) q = -1 + Accumulate[Table[p[k], {k, 0, n - 1}]] (*A246128*)
Comments