A246129
Decimal expansion of the number whose continued fraction is given by A246127 (limiting block extension of an infinite Fibonacci word).
Original entry on oeis.org
2, 3, 6, 6, 3, 0, 4, 6, 9, 4, 6, 5, 3, 2, 7, 2, 6, 5, 6, 6, 8, 2, 4, 9, 7, 2, 0, 5, 8, 6, 1, 4, 5, 6, 9, 1, 0, 0, 8, 1, 9, 9, 4, 8, 1, 0, 4, 0, 9, 5, 8, 9, 1, 0, 9, 3, 0, 5, 4, 1, 0, 2, 7, 1, 3, 8, 5, 3, 7, 7, 9, 1, 0, 1, 9, 1, 3, 5, 3, 1, 1, 3, 4, 6, 2, 6
Offset: 1
[2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1,...] = 2.3663046946532726566824972058...
-
seqPosition1[list_, seqtofind_] := If[Length[#] > Length[list], {}, Last[Last[ Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 1]]]] &[seqtofind]; s = Differences[Table[Floor[n*GoldenRatio], {n, 10000}]]; t = {{2}}; p[0] = seqPosition1[s, Last[t]]; s = Drop[s, p[0]]; Off[Last::nolast]; n = 1; While[(p[n] = seqPosition1[s, Last[t]]) > 0, (AppendTo[t, Take[s, {#, # + Length[Last[t]]}]]; s = Drop[s, #]) &[p[n]]; n++]; On[Last::nolast]; t1 = Last[t] (*A246127*)
q = -1 + Accumulate[Table[p[k], {k, 0, n - 1}]] (*A246128*)
u = N[FromContinuedFraction[t1], 100]
r = RealDigits[u][[1]] (* A246129 *)
A245920
Limit-reverse of the (2,1)-version of the infinite Fibonacci word A014675 with first term as initial block.
Original entry on oeis.org
2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2
Offset: 0
S = infinite Fibonacci word A014675, B = (s(0)); that is, (m,k) = (0,0);
S = (2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,...)
B'(0) = (2)
B'(1) = (2,1)
B'(2) = (2,1,2)
B'(3) = (2,1,2,1)
B'(4) = (2,1,2,1,2)
B'(5) = (2,1,2,1,2,2)
S* = (2,1,2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,...),
with index sequence (0,2,5,7,15,...)
-
z = 100; seqPosition2[list_, seqtofind_] := Last[Last[Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 2]]] &[seqtofind]; x = GoldenRatio; s = Differences[Table[Floor[n*x], {n, 1, z^2}]] ; ans = Join[{s[[p[0] = pos = seqPosition2[s, #] - 1]]}, #] &[{s[[1]]}]; cfs = Table[s = Drop[s, pos - 1]; ans = Join[{s[[p[n] = pos = seqPosition2[s, #] - 1]]}, #] &[ans], {n, z}]; rcf = Last[Map[Reverse, cfs]]
A246128
Index sequence for limit-block extending the (2,1)-version of the infinite Fibonacci word A014675 with first term as initial block.
Original entry on oeis.org
0, 2, 7, 10, 15, 23, 31, 36, 44, 49, 57, 70, 78, 91, 104, 112, 125, 138, 159, 193, 214, 248, 282, 303, 337, 371, 392, 426, 447, 481, 515, 536, 570, 591, 625, 659, 680, 714, 748, 803, 892, 981, 1036, 1125, 1180, 1269, 1358, 1413, 1502, 1557, 1646, 1735, 1790
Offset: 0
S = the infinite Fibonacci word A014675, with B = (s(0)); that is, (m,k) = (0,0); S = (2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,...)
B'(0) = (2)
B'(1) = (2,2)
B'(2) = (2,2,1)
B'(3) = (2,2,1,2)
B'(4) = (2,2,1,2,1)
B'(5) = (2,2,1,2,1,2)
S^ = (2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2,...),
with index sequence (0,2,7,10,15,...)
-
seqPosition1[list_, seqtofind_] := If[Length[#] > Length[list], {}, Last[Last[ Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 1]]]] &[seqtofind]; s = Differences[Table[Floor[n*GoldenRatio], {n, 10000}]]; t = {{2}}; p[0] = seqPosition1[s, Last[t]]; s = Drop[s, p[0]]; Off[Last::nolast]; n = 1; While[(p[n] = seqPosition1[s, Last[t]]) > 0, (AppendTo[t, Take[s, {#, # + Length[Last[t]]}]]; s = Drop[s, #]) &[p[n]]; n++]; On[Last::nolast]; t1 = Last[t] (*A246127*)
q = -1 + Accumulate[Table[p[k], {k, 0, n - 1}]] (*A246128*)
A246144
Limiting block extension of A000002 (Kolakoski sequence) with first term as initial block.
Original entry on oeis.org
1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2
Offset: 1
S = A000002, with B = (s(1)); that is, (m,k) = (1,0)
S = (1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1,2,1,...)
B'(0) = (1)
B'(1) = (1,1)
B'(2) = (1,1,2)
B'(3) = (1,1,2,2)
B'(4) = (1,1,2,2,1)
B'(5) = (1,1,2,2,1,2)
S^ = (1,1,2,2,1,2,1,1,2,1,2,2,1,1,2,1,1,...),
with index sequence (1,4,13,16,51,78,97,124,178,247,322,...)
-
seqPosition1[list_, seqtofind_] := If[Length[#] > Length[list], {}, Last[Last[Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 1]]]] &[seqtofind]; n = 30; s = Prepend[Nest[Flatten[Partition[#, 2] /. {{2, 2} -> {2, 2, 1, 1}, {2, 1} -> {2, 2, 1}, {1, 2} -> {2, 1, 1}, {1, 1} -> {2, 1}}] &, {2, 2}, n], 1]; (* A246144 *)
Take[s, 30]
t = {{1}}; p[0] = seqPosition1[s, Last[t]]; s = Drop[s, p[0]]; Off[Last::nolast]; n = 1; While[(p[n] = seqPosition1[s, Last[t]]) > 0, (AppendTo[t, Take[s, {#, # + Length[Last[t]]}]]; s = Drop[s, #]) &[p[n]]; n++]; On[Last::nolast]; Last[t] (* A246144*)
Accumulate[Table[p[k], {k, 0, n - 1}]] (*A246145*)
A246140
Limiting block extension of A006337 (difference sequence of the Beatty sequence for sqrt(2)) with first term as initial block.
Original entry on oeis.org
1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1
Offset: 1
S = A006337, with B = (s(1)); that is, (m,k) = (1,0)
S = (1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2,...)
B'(0) = (1)
B'(1) = (1,2)
B'(2) = (1,2,1)
B'(3) = (1,2,1,1)
B'(4) = (1,2,1,1,2)
B'(5) = (1,2,1,1,2,1)
S^ = (1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1,...),
with index sequence (1,3,6,8,15,...)
-
seqPosition1[list_, seqtofind_] := If[Length[#] > Length[list], {}, Last[Last[ Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 1]]]] &[seqtofind]; s = Differences[Table[Floor[n*Sqrt[2]], {n, 10000}]]; Take[s, 60]
t = {{1}}; p[0] = seqPosition1[s, Last[t]]; s = Drop[s, p[0]]; Off[Last::nolast]; n = 1; While[(p[n] = seqPosition1[s, Last[t]]) > 0, (AppendTo[t, Take[s, {#, # +Length[Last[t]]}]]; s = Drop[s, #]) &[p[n]]; n++]; On[Last::nolast]; Last[t] (* A246140 *)
Accumulate[Table[p[k], {k, 0, n - 1}]] (* A246141 *)
A246147
Index sequence for limit-block extending A010060 (Thue-Morse sequence) with first term as initial block.
Original entry on oeis.org
0, 3, 6, 12, 20, 30, 36, 68, 92, 116, 132, 156, 180, 228, 260, 308, 356, 420, 452, 516, 564, 612, 676, 708, 756, 804, 836, 900, 948, 996, 1076, 1188, 1268, 1316, 1460, 1572, 1716, 1764, 1844, 1956, 2100, 2212, 2292, 2340, 2484, 2740, 2868, 3060, 3252, 3380
Offset: 0
S = A010060, with B = (s(0)); that is, (m,k) = (0,0)
S = (0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,...)
B'(0) = (0)
B'(1) = (0,1)
B'(2) = (0,1,1)
B'(3) = (0,1,1,0)
B'(4) = (0,1,1,0,0)
B'(5) = (0,1,1,0,0,1)
S^ = (0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,...),
with index sequence (0,3,6,12,20,30,36,68,...)
-
seqPosition1[list_, seqtofind_] := If[Length[#] > Length[list], {}, Last[Last[Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 1]]]] &[seqtofind]; s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {1, 0}}] &, {0}, 14]; (* A010060 *)
Take[s, 60]
t = {{0}}; p[0] = seqPosition1[s, Last[t]]; s = Drop[s, p[0]]; Off[Last::nolast]; n = 1; While[(p[n] = seqPosition1[s, Last[t]]) > 0, (AppendTo[t, Take[s, {#, # + Length[Last[t]]}]]; s = Drop[s, #]) &[p[n]]; n++]; On[Last::nolast]; Last[t] (* A246146 *)
-1 + Accumulate[Table[p[k], {k, 0, n - 1}]] (* A246147 *)
A246141
Index sequence for limit-block extending A006337 (difference sequence of the Beatty sequence for sqrt(2)) with first term as initial block.
Original entry on oeis.org
1, 3, 6, 8, 15, 20, 27, 32, 37, 49, 66, 78, 90, 107, 119, 136, 148, 160, 177, 189, 206, 235, 247, 276, 305, 317, 346, 375, 404, 416, 445, 474, 486, 515, 556, 585, 614, 655, 684, 725, 754, 783, 824, 853, 894, 923, 964, 993, 1022, 1063, 1092, 1133, 1162, 1191
Offset: 1
S = A006337, with B = (s(1)); that is, (m,k) = (1,0)
S = (1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2,...)
B'(0) = (1)
B'(1) = (1,2)
B'(2) = (1,2,1)
B'(3) = (1,2,1,1)
B'(4) = (1,2,1,1,2)
B'(5) = (1,2,1,1,2,1)
S^ = (1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1,...),
with index sequence (1,3,6,8,15,...)
-
seqPosition1[list_, seqtofind_] := If[Length[#] > Length[list], {}, Last[Last[ Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 1]]]] &[seqtofind]; s = Differences[Table[Floor[n*Sqrt[2]], {n, 10000}]]; Take[s, 60]
t = {{1}}; p[0] = seqPosition1[s, Last[t]]; s = Drop[s, p[0]]; Off[Last::nolast]; n = 1; While[(p[n] = seqPosition1[s, Last[t]]) > 0, (AppendTo[t, Take[s, {#, # +Length[Last[t]]}]]; s = Drop[s, #]) &[p[n]]; n++]; On[Last::nolast]; Last[t] (* A246140 *)
Accumulate[Table[p[k], {k, 0, n - 1}]] (* A246141 *)
A246143
Index sequence for limit-block extending A004539 (base-2 representation of sqrt(2)) with first term as initial block.
Original entry on oeis.org
1, 3, 17, 18, 35, 45, 239, 341, 470, 1180, 1230, 2205, 5318, 45652, 68042, 73350, 119458, 388804, 475300, 773496, 836779, 845397, 1133816, 2670010
Offset: 1
S = A004539, with B = (s(1)); that is, (m,k) = (1,0)
S = (1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, ...)
B'(0) = (1)
B'(1) = (1,1)
B'(2) = (1,1,1)
B'(3) = (1,1,1,0)
B'(4) = (1,1,1,0,0)
B'(5) = (1,1,1,0,0,1)
S^ = (1,1,1,0,0,1,1,0,1,0,0,1,1,0,...),
with index sequence (1,3,17,18,35,45,239,341,...)
-
seqPosition1[list_, seqtofind_] := If[Length[#] > Length[list], {}, Last[Last[Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 1]]]] &[seqtofind]; s = RealDigits[Sqrt[2], 2, 10000000][[1]]; Take[s, 60]
t = {{1}}; p[0] = seqPosition1[s, Last[t]]; s = Drop[s, p[0]]; Off[Last::nolast]; n = 1; While[(p[n] = seqPosition1[s, Last[t]]) > 0, (AppendTo[t, Take[s, {#, # + Length[Last[t]]}]]; s = Drop[s, #]) &[p[n]]; n++]; On[Last::nolast]; Last[t] (*A246142*)
Accumulate[Table[p[k], {k, 0, n - 1}]] (*A246143*)
Showing 1-8 of 8 results.
Comments