A246133 a(n) = (binomial(2n, n) - 2) mod n^3.
0, 4, 18, 4, 0, 58, 0, 68, 504, 754, 0, 1562, 0, 2062, 2518, 580, 0, 922, 0, 818, 6535, 7990, 0, 12058, 250, 4398, 2691, 10358, 0, 12422, 0, 16964, 10666, 29482, 3680, 42818, 0, 41158, 19791, 13618, 0, 54430, 0, 71942, 40993, 73006, 0, 12058, 3430, 122254, 98278, 127494, 0
Offset: 1
Keywords
Examples
a(7)= (binomial(14,7)-2) mod 7^3 = (3432-2) mod 343 = 10*343 mod 343 = 0.
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..10000
- Wikipedia, Wolstenholme's theorem
Programs
-
Maple
seq(binomial(2*n,n)-2 mod n^3, n=1..100); # Robert Israel, Aug 17 2014
-
Mathematica
Table[Mod[Binomial[2 n, n] - 2, n^3], {n, 60}] (* Wesley Ivan Hurt, May 25 2024 *)
-
PARI
a(n) = (binomial(2*n,n)-2)%n^3
Formula
For any prime p>3, a(p)=0.
Comments