A246157 Reducible polynomials over GF(2) which are both odd and odious when coded in binary, or equally, which have an odd number of nonzero terms, with the constant term being 1.
21, 35, 49, 69, 79, 81, 93, 107, 121, 127, 133, 151, 155, 161, 173, 179, 181, 199, 205, 217, 223, 227, 233, 251, 259, 261, 265, 271, 273, 279, 289, 295, 307, 309, 321, 327, 331, 339, 341, 345, 367, 381, 385, 403, 405, 409, 421, 431, 439, 443, 453, 457, 465, 475, 481, 491, 493, 511
Offset: 1
Examples
35 in binary is 100011, which encodes polynomial x^5 + x + 1, which factorizes as (x^2 + x + 1)(x^3 + x^2 + 1) over GF(2) (35 = A048720(7,13)), thus it is reducible in that polynomial ring. Also, it is odd (the least significant bit is 1, that is, the constant term is not zero) and also odious, as there are three 1-bits (nonzero terms) present. Thus, 35 is included in this sequence.
Comments