A246202 Permutation of natural numbers: a(1) = 1, a(2n) = A091242(a(n)), a(2n+1) = A014580(a(n)), where A091242(n) = binary code for n-th reducible polynomial over GF(2) and A014580(n) = binary code for n-th irreducible polynomial over GF(2).
1, 4, 2, 8, 11, 5, 3, 14, 31, 17, 47, 9, 13, 6, 7, 21, 61, 42, 185, 24, 87, 62, 319, 15, 37, 20, 59, 10, 19, 12, 25, 29, 109, 78, 425, 54, 283, 222, 1627, 33, 131, 108, 647, 79, 433, 373, 3053, 22, 67, 49, 229, 28, 103, 76, 415, 16, 41, 27, 97, 18, 55, 34, 137, 39, 167, 134, 859, 98, 563, 494, 4225, 70, 375, 331, 2705, 264, 2011, 1832, 19891, 44
Offset: 1
Links
Crossrefs
Programs
-
PARI
allocatemem((2^31)+(2^30)); uplim = (2^25) + (2^24); v014580 = vector(2^24); v091242 = vector(uplim); isA014580(n)=polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ This function from Charles R Greathouse IV i=0; j=0; n=2; while((n < uplim), if(isA014580(n), i++; v014580[i] = n, j++; v091242[j] = n); n++) A246202(n) = if(1==n, 1, if(0==(n%2), v091242[A246202(n/2)], v014580[A246202((n-1)/2)])); for(n=1, 638, write("b246202.txt", n, " ", A246202(n))); \\ Works with PARI Version 2.7.4. - Antti Karttunen, Jul 25 2015 (Scheme, with memoization-macro definec) (definec (A246202 n) (cond ((< n 2) n) ((odd? n) (A014580 (A246202 (/ (- n 1) 2)))) (else (A091242 (A246202 (/ n 2))))))
Formula
As a composition of related permutations:
Other identities:
Comments