A246173 Triangle read by rows: T(n,k) is the number of vertex pairs at distance k of the Fibonacci cube Gamma(n) (1<=k<=n).
1, 2, 1, 5, 4, 1, 10, 11, 6, 1, 20, 28, 21, 8, 1, 38, 64, 62, 35, 10, 1, 71, 140, 164, 120, 53, 12, 1, 130, 293, 402, 360, 210, 75, 14, 1, 235, 596, 935, 984, 708, 340, 101, 16, 1, 420, 1183, 2086, 2517, 2142, 1280, 518, 131, 18, 1, 744, 2304, 4507, 6120, 5991, 4260, 2164, 752, 165, 20, 1
Offset: 1
Examples
Row 2 is 2,1. Indeed, Gamma(2) is the path-tree P(3) having vertex-pair distances 1,1, and 2. Triangle starts: 1; 2,1; 5,4,1; 10,11,6,1; 20,28,21,8,1;
Links
- S. Klavzar, Structure of Fibonacci cubes: a survey, J. Comb. Optim., 25, 2013, 505-522.
- S. Klavzar, M. Mollard, Wiener index and Hosoya polynomial of Fibonacci and Lucas cubes, MATCH Commun. Math. Comput. Chem., 68, 2012, 311-324.
- Eric Weisstein's World of Mathematics, Fibonacci Cube Graph
Programs
-
Maple
g := t*z/((1-z-z^2-t*z-t*z^2+t*z^3)*(1-z-z^2)): gserz := simplify(series(g, z = 0, 20)): for j to 18 do H[j] := sort(coeff(gserz, z, j)) end do: for j to 13 do seq(coeff(H[j], t, k), k = 1 .. j) end do; # yields sequence in triangular form
-
Mathematica
Rest /@ Rest[CoefficientList[CoefficientList[Series[t z/((1 - z - z^2 - t z - t z^2 + t z^3) (1 - z - z^2)), {z, 0, 10}, {t, 0, 5}], z], t]] // Flatten (* Eric W. Weisstein, Dec 11 2017 *) DeleteCases[CoefficientList[Series[t z/((1 - z - z^2 - t z - t z^2 + t z^3) (1 - z - z^2)), {z, 0, 10}], {z, t}], 0, {2}] // Flatten (* Eric W. Weisstein, Dec 11 2017 *)
Formula
G.f.: tz/((1-z-z^2-tz-tz^2+tz^3)(1-z-z^2)). Derived from Theorem 4.1 of the Klavzar-Mollard reference in which the g.f. of the ordered Hosoya polynomials is given.
Comments