cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246175 The hyper-Wiener index of the Fibonacci cube Gamma(n) (n>=1).

Original entry on oeis.org

1, 5, 23, 89, 325, 1123, 3750, 12174, 38682, 120750, 371478, 1128810, 3394159, 10112987, 29892425, 87737471, 255912115, 742272853, 2142128604, 6153811500, 17605105380, 50174676300, 142501128540, 403422149220, 1138714934125, 3205372562369, 8999834877995, 25209180070037
Offset: 1

Views

Author

Emeric Deutsch, Aug 18 2014

Keywords

Comments

The Fibonacci cube Gamma(n) can be defined as the graph whose vertices are the binary strings of length n without two consecutive 1's and in which two vertices are adjacent when their Hamming distance is exactly 1.

Crossrefs

Programs

  • Maple
    G := z*(1-z-z^2)/((1+z)^3*(1-3*z+z^2)^3): Gser := series(G, z = 0, 40): seq(coeff(Gser, z, j), j = 1 .. 35);
  • Mathematica
    CoefficientList[Series[z (1-z-z^2)/((1+z)^3(1-3z+z^2)^3),{z,0,30}],z] (* Harvey P. Dale, Mar 05 2019 *)

Formula

G.f.: z*(1-z-z^2)/((1+z)^3*(1-3*z+z^2)^3).
625*a(n) = -1/2*(-1)^n*(74+45*n+5*n^2) -5*(2*A001871(n)-3*A001871(n-1)) +17*A001906(n)-53*A001906(n+1) +50*(2*A246178(n)-3*A246178(n-1)). - R. J. Mathar, Jul 22 2022