A246181 Triangle read by rows: T(n,k) is the number of weighted lattice paths B(n) having k (1,0)-steps of weight 1. B(n) is the set of lattice paths of weight n that start in (0,0), end on the horizontal axis and never go below this axis, whose steps are of the following four kinds: a (1,0)-step of weight 1; a (1,0)-step of weight 2; a (1,1)-step of weight 2; a (1,-1)-step of weight 1. The weight of a path is the sum of the weights of its steps.
1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 3, 3, 0, 1, 3, 3, 6, 4, 0, 1, 3, 12, 6, 10, 5, 0, 1, 6, 14, 30, 10, 15, 6, 0, 1, 11, 30, 40, 60, 15, 21, 7, 0, 1, 15, 65, 90, 90, 105, 21, 28, 8, 0, 1, 31, 95, 225, 210, 175, 168, 28, 36, 9, 0, 1, 50, 216, 350, 595, 420, 308, 252, 36, 45, 10, 0, 1
Offset: 0
Examples
Row 3 is 1,2,0,1. Indeed, denoting by h (H) the (1,0)-step of weight 1 (2), and u=(1,1), d=(1,-1), the four paths of weight 3 are: ud, hH, Hh, and hhh, having 0, 1, 1, and 3 (1,0)-steps of weight 1, respectively. Triangle starts: 1; 0,1; 1,0,1; 1,2,0,1; 1,3,3,0,1; 3,3,6,4,0,1;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- M. Bona and A. Knopfmacher, On the probability that certain compositions have the same number of parts, Ann. Comb., 14 (2010), 291-306.
Programs
-
Maple
eq := G = 1+t*z*G+z^2*G+z^3*G^2: G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 22)): for n from 0 to 17 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 15 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form # second Maple program: b:= proc(n, y) option remember; `if`(y<0 or y>n, 0, `if`(n=0, 1, expand(b(n-1, y)*x+ `if`(n>1, b(n-2, y)+b(n-2, y+1), 0) +b(n-1, y-1)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)): seq(T(n), n=0..12); # Alois P. Heinz, Aug 24 2014
-
Mathematica
b[n_, y_] := b[n, y] = If[y<0 || y>n, 0, If[n==0, 1, Expand[b[n-1, y]*x + If[n>1, b[n-2, y] + b[n-2, y+1], 0] + b[n-1, y-1]]]]; T[n_] := Function[{p}, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jun 29 2015, after Alois P. Heinz *)
Formula
G.f. G=G(t,z) satisfies G = 1 + t*z*G + z^2*G + z^3*G^2.
Comments