cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246188 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having k occurrences of the string ududu, where u=(1,1), d=(1,-1).

Original entry on oeis.org

1, 1, 2, 4, 1, 11, 2, 1, 31, 8, 2, 1, 92, 28, 9, 2, 1, 283, 99, 34, 10, 2, 1, 893, 354, 129, 40, 11, 2, 1, 2875, 1273, 492, 161, 46, 12, 2, 1, 9407, 4598, 1882, 646, 195, 52, 13, 2, 1, 31189, 16679, 7199, 2597, 816, 231, 58, 14, 2, 1, 104555, 60712, 27570, 10400, 3422, 1002, 269, 64, 15, 2, 1
Offset: 0

Views

Author

Emeric Deutsch, Sep 10 2014

Keywords

Comments

Row n contains n-1 entries (n>=2).
Sum of entries in row n is the Catalan number A000108(n).
Sum(k*T(n,k), k>=0) = A001791(n-2) (n>=2).
T(21,k) = A243752(21,k), T(n,0) = A243753(n,21) = A247333(n). - Alois P. Heinz, Sep 13 2014

Examples

			Row 4 is 11, 2, 1; indeed in the 14 Dyck paths of semilength 4 ududu occurs only once in ududuudd, once in uudududd, and twice in udududud.
Triangle starts:
   1;
   1;
   2;
   4, 1;
  11, 2, 1;
  31, 8, 2, 1;
  ...
		

Crossrefs

Programs

  • Maple
    C := proc (u) options operator, arrow: (1/2-(1/2)*sqrt(1-4*u))/u end proc: G := C(z*(1-t*z-z^2+t*z^2)/(1-t*z-z^3+t*z^3)): Gser := simplify(series(G, z = 0, 20)): T := proc (n, k) options operator, arrow: coeff(coeff(Gser, z, n), t, k) end proc: 1; 1; for n from 2 to 12 do seq(T(n, k), k = 0 .. n-2) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, expand(b(x-1, y+1, [2, 2, 4, 2, 4][t])*
         `if`(t=5, z, 1) +b(x-1, y-1, [1, 3, 1, 5, 1][t]))))
        end:
    T:= n->(p->seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Sep 10 2014
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, Expand[b[x-1, y+1, {2, 2, 4, 2, 4}[[t]] ]*If[t == 5, z, 1] + b[x-1, y-1, {1, 3, 1, 5, 1}[[t]] ]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 1]];Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 27 2015, after Alois P. Heinz *)

Formula

G.f.: C(z*(1-t*z-z^2+t*z^2)/(1-t*z-z^3+t*z^3)), where C(u) = (1-sqrt(1-4*u))/(2*u) is the Catalan function. See Corollary 2.2 in the Mansour reference.