cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246189 Number of endofunctions on [n] where the smallest cycle length equals 2.

Original entry on oeis.org

1, 6, 51, 580, 8265, 141246, 2810437, 63748728, 1622579985, 45775778950, 1417347491241, 47776074289164, 1741386177576409, 68238497945688630, 2860625245955274225, 127736893134458097136, 6052712065187733972513, 303322427195785592735502, 16028016368907840953165425
Offset: 2

Views

Author

Alois P. Heinz, Aug 18 2014

Keywords

Crossrefs

Column k=2 of A246049.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0,
          add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i+1), j=0..n/i)))
        end:
    A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, k), j=0..n):
    a:= n-> A(n, 2) -A(n, 3):
    seq(a(n), n=2..25);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i>n, 0, Sum[(i - 1)!^j multinomial[ n, Join[{n - i*j}, Table[i, {j}]]]/j! b[n - i*j, i + 1], {j, 0, n/i}]]];
    A[n_, k_] := Sum[Binomial[n - 1, j - 1] n^(n - j) b[j, k], {j, 0, n}];
    a[n_] := A[n, 2] - A[n, 3];
    a /@ Range[2, 25] (* Jean-François Alcover, Dec 28 2020, after Alois P. Heinz *)

Formula

a(n) ~ (exp(-1) - exp(-3/2)) * n^n. - Vaclav Kotesovec, Aug 21 2014