A246190 Number of endofunctions on [n] where the smallest cycle length equals 3.
2, 24, 300, 4360, 74130, 1456224, 32562152, 817596000, 22785399450, 697951656160, 23306666102148, 842567564800416, 32781106696806650, 1365579024023558400, 60639189588419033040, 2859165143013913590016, 142651621238828972159538, 7508140027468431374563200
Offset: 3
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..200
Crossrefs
Column k=3 of A246049.
Programs
-
Maple
with(combinat): b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0, add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!* b(n-i*j, i+1), j=0..n/i))) end: A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, k), j=0..n): a:= n-> A(n, 3) -A(n, 4): seq(a(n), n=3..25);
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n==0, 1, If[i>n, 0, Sum[(i - 1)!^j multinomial[n, Join[{n - i*j}, Table[i, {j}]]]/j! b[n - i*j, i + 1], {j, 0, n/i}]]]; A[n_, k_] := Sum[Binomial[n - 1, j - 1] n^(n - j) b[j, k], {j, 0, n}]; a[n_] := A[n, 3] - A[n, 4]; a /@ Range[3, 25] (* Jean-François Alcover, Dec 28 2020, after Alois P. Heinz *)
Formula
a(n) ~ (exp(-3/2) - exp(-11/6)) * n^n. - Vaclav Kotesovec, Aug 21 2014