cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246192 Number of endofunctions on [n] where the smallest cycle length equals 5.

Original entry on oeis.org

24, 720, 17640, 430080, 11022480, 302472576, 8937981360, 284552040960, 9743091569640, 357820740076800, 14051646110285784, 588177615908413440, 26161789829441054880, 1232890909824506204160, 61387038018996808785120, 3221070809733138102829056
Offset: 5

Views

Author

Alois P. Heinz, Aug 18 2014

Keywords

Crossrefs

Column k=5 of A246049.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0,
          add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i+1), j=0..n/i)))
        end:
    A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, k), j=0..n):
    a:= n-> A(n, 5) -A(n, 6):
    seq(a(n), n=5..25);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i>n, 0, Sum[(i - 1)!^j multinomial[n, Join[{n - i*j}, Table[i, {j}]]]/j! b[n - i*j, i + 1], {j, 0, n/i}]]];
    A[n_, k_] :=
     Sum[Binomial[n - 1, j - 1] n^(n - j) b[j, k], {j, 0, n}];
    a[n_] := A[n, 5] - A[n, 6];
    a /@ Range[5, 25] (* Jean-François Alcover, Dec 28 2020, after Alois P. Heinz *)

Formula

a(n) ~ (exp(-25/12) - exp(-137/60)) * n^n. - Vaclav Kotesovec, Aug 21 2014