A246241 Sum of sixth powers of coefficients in full expansion of (z_1+z_2+...+z_n)^n.
1, 1, 66, 51033, 227263876, 3942914312505, 207874071367118436, 28034487027123336138967, 8522964991458712709499563784, 5302659152501095787067079018931409, 6255441983177258421672575234559926069140, 13154762734940720943667470423246456789300752691
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..100
Crossrefs
Column k=6 of A245397.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-j, i-1)*binomial(n, j)^5/j!, j=0..n))) end: a:= n-> n!*b(n$2): seq(a(n), n=0..15);
Formula
a(n) = [x^n] (n!)^6 * (Sum_{j=0..n} x^j/(j!)^6)^n.