A246242 Sum of seventh powers of coefficients in full expansion of (z_1+z_2+...+z_n)^n.
1, 1, 130, 293061, 5018329348, 414999981562505, 124389170238814179336, 110807909819808911886548575, 253626563859350391170222920686088, 1334380576777390115212093953972864348177, 14777734823564325121187478504310896072495827020
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..90
Crossrefs
Column k=7 of A245397.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-j, i-1)*binomial(n, j)^6/j!, j=0..n))) end: a:= n-> n!*b(n$2): seq(a(n), n=0..15);
Formula
a(n) = [x^n] (n!)^7 * (Sum_{j=0..n} x^j/(j!)^7)^n.