A246243 Sum of eighth powers of coefficients in full expansion of (z_1+z_2+...+z_n)^n.
1, 1, 258, 1718985, 115245958660, 46377854607812505, 80785609177262537107236, 486005483266096999009285275991, 8558639841332633529404511878004186120, 388791577542234912413815089860741309780872785, 41231194444310047390596429351583294775856761836687780
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..80
Crossrefs
Column k=8 of A245397.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-j, i-1)*binomial(n, j)^7/j!, j=0..n))) end: a:= n-> n!*b(n$2): seq(a(n), n=0..15);
Formula
a(n) = [x^n] (n!)^8 * (Sum_{j=0..n} x^j/(j!)^8)^n.