A246245 Sum of tenth powers of coefficients in full expansion of (z_1+z_2+...+z_n)^n.
1, 1, 1026, 60820473, 64146764716036, 631284899540195312505, 38539161299138154741325704036, 11011511482200093499929279574758403927, 11981061614421454177965724891826362153433952264, 42406820883646957465685129173683494532584922157233295569
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..69
Crossrefs
Column k=10 of A245397.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-j, i-1)*binomial(n, j)^9/j!, j=0..n))) end: a:= n-> n!*b(n$2): seq(a(n), n=0..12);
Formula
a(n) = [x^n] (n!)^10 * (Sum_{j=0..n} x^j/(j!)^10)^n.