cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246257 Triangular array read by rows: T(n, k) = S(n, [n/2]-k) and S(n,k) = C(n, 2*k)*(2*k-1)!!*((2*k-1)!! + 1)/2, n>=0, 0<=k<=[n/2].

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 6, 6, 1, 30, 10, 1, 120, 90, 15, 1, 840, 210, 21, 1, 5565, 3360, 420, 28, 1, 50085, 10080, 756, 36, 1, 446985, 250425, 25200, 1260, 45, 1, 4916835, 918225, 55440, 1980, 55, 1, 54033210, 29501010, 2754675, 110880, 2970, 66, 1
Offset: 0

Views

Author

Peter Luschny, Aug 21 2014

Keywords

Examples

			Triangle starts:
[ 0] 1,
[ 1] 1,
[ 2] 1, 1,
[ 3] 3, 1,
[ 4] 6, 6, 1,
[ 5] 30, 10, 1,
[ 6] 120, 90, 15, 1,
[ 7] 840, 210, 21, 1,
[ 8] 5565, 3360, 420, 28, 1,
[ 9] 50085, 10080, 756, 36, 1,
[10] 446985, 250425, 25200, 1260, 45, 1.
		

Crossrefs

Cf. A002771 (row sums), A246256, A096713.

Programs

  • Maple
    T := proc(n, k) local j; j := iquo(n,2) - k;
    (n!/(j!*(n-2*j)!))*(2^(-j-1)+GAMMA(j+1/2)/sqrt(4*Pi)) end:
    seq(print(seq(T(n,k), k=0..iquo(n,2))), n=0..10);
  • Mathematica
    row[n_] := FunctionExpand[HypergeometricPFQ[{-n/2, (1-n)/2}, {}, 2z] + HypergeometricPFQ[{1/2, -n/2, (1-n)/2}, {}, 4z]]/2 // CoefficientList[#, z]& // Reverse;
    Table[row[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 02 2019 *)
  • Sage
    from sage.functions.hypergeometric import closed_form
    def A246257_row(n):
        R. = ZZ[]
        h = hypergeometric([-n/2,(1-n)/2], [], 2*z)
        g = hypergeometric([1/2,-n/2,(1-n)/2], [], 4*z)
        T = R(((closed_form(h)+closed_form(g))/2)).coefficients()
        return T[::-1]
    for n in range(13): A246257_row(n)

Formula

T(n, k) = (n!/(j!*(n-2*j)!))*(2^(-j-1)+Gamma(j+1/2)/sqrt(4*Pi)) where j = floor(n/2) - k.