cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A246256 Triangular array read by rows. Row n lists the coefficients of the closed form of hypergeometric([1/2, -n/2, (1-n)/2], [], 4*z).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 9, 6, 1, 45, 10, 1, 225, 135, 15, 1, 1575, 315, 21, 1, 11025, 6300, 630, 28, 1, 99225, 18900, 1134, 36, 1, 893025, 496125, 47250, 1890, 45, 1, 9823275, 1819125, 103950, 2970, 55, 1, 108056025, 58939650, 5457375, 207900, 4455, 66, 1
Offset: 0

Views

Author

Peter Luschny, Aug 21 2014

Keywords

Examples

			Triangle starts:
[ 0] 1,
[ 1] 1,
[ 2] 1, 1,
[ 3] 3, 1,
[ 4] 9, 6, 1,
[ 5] 45, 10, 1,
[ 6] 225, 135, 15, 1,
[ 7] 1575, 315, 21, 1,
[ 8] 11025, 6300, 630, 28, 1,
[ 9] 99225, 18900, 1134, 36, 1,
[10] 893025, 496125, 47250, 1890, 45, 1,
[11] 9823275, 1819125, 103950, 2970, 55, 1,
...
		

Crossrefs

Cf. A081919 (row sums), A138022, A246257.

Programs

  • Maple
    g := exp(x*z)/sqrt((1-z)/(1+z)); gser := n -> series(g, z, n+2):
    seq(seq(coeff(n!*coeff(gser(n),z,n),x,2*i+irem(n,2)),i=0..iquo(n,2)),n=0..12);
    # Recurrence for A138022 from Robert Israel.
    T := proc(n, k) option remember;
    if k < 0 or n < k then 0 elif k = n then 1 elif k = n-1 then n
    elif k = 0 then T(n-1,k)+(n-2)*(n-1)*T(n-2,k)
    else T(n-1,k)+T(n-1,k-1)+(n-2)*(n-1)*(T(n-2,k)-T(n-3,k-1)) fi end:
    A246256_row := n -> seq(T(n,2*k+(n mod 2)),k=0..iquo(n,2)):
    seq(A246256_row(n), n=0..12);
  • Mathematica
    row[n_] := HypergeometricPFQ[{1/2, -n/2, (1-n)/2}, {}, 4z] // FunctionExpand // CoefficientList[#, z]& // Reverse;
    Table[row[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 02 2019 *)
    T[n_, k_] := Product[(2*j - 1)^2, {j, 0, Floor[n/2] - k}]*Binomial[n, 2*k + Mod[n,2]]; Flatten[Table[T[n,k],{n, 0, 12},{k, 0 ,Floor[n/2]}]] (*  Detlef Meya, May 05 2024 *)
  • Sage
    from sage.functions.hypergeometric import closed_form
    def A246256_row(n):
        R. = ZZ[]
        h = hypergeometric([1/2,-n/2,(1-n)/2], [], 4*z)
        T = R(closed_form(h)).coefficients()
        return T[::-1]
    for n in range(13): A246256_row(n)

Formula

For the e.g.f. and a recurrence see the Maple program.
T(n, k) = (Product_{j=0..(floor(n/2) - k)} (2*j - 1)^2)*binomial(n, 2*k + (n mod 2)). - Detlef Meya, May 05 2024
Showing 1-1 of 1 results.