cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246313 G.f.: (-1+6*x)/(1-3*x-2*x^2).

Original entry on oeis.org

-1, 3, 7, 27, 95, 339, 1207, 4299, 15311, 54531, 194215, 691707, 2463551, 8774067, 31249303, 111296043, 396386735, 1411752291, 5028030343, 17907595611, 63778847519, 227151733779, 809012896375, 2881342156683, 10262052262799, 36548841101763, 130170627830887, 463609565696187, 1651169952750335
Offset: 0

Views

Author

N. J. A. Sloane, Aug 26 2014

Keywords

Comments

Encountered during the analysis of a certain cellular automaton.

Programs

  • Magma
    I:=[-1,3]; [n le 2 select I[n] else 3*Self(n-1)+2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 27 2014
    
  • Maple
    a:= LRETools[REtoproc](a(n)=3*a(n-1)+2*a(n-2),a(n),{a(0)=-1,a(1)=3}):
    seq(a(i),i=0..100); # Robert Israel, Aug 27 2014
  • Mathematica
    CoefficientList[Series[(6 x - 1)/(1 - 3 x - 2 x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 27 2014 *)
  • PARI
    Vec((-1+6*x)/(1-3*x-2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 02 2014

Formula

a(n) = 3*a(n-1) + 2*a(n-2) with a(0)=-1, a(1)=3.
a(n) = -(17+9*sqrt(17))/34*(3/2-sqrt(17)/2)^n+(-17+9*sqrt(17))/34*(3/2+sqrt(17)/2)^n. For n >= 3, a(n) = round((-17+9*sqrt(17))/34*(3/2+sqrt(17)/2)^n). - Robert Israel, Aug 27 2014
a(n) = 6*A007482(n-1)+A007482(n). - R. J. Mathar, Feb 27 2019