cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A246335 Second bisection of A246333.

Original entry on oeis.org

1, 5, 9, 21, 25, 37, 57, 85, 89, 101, 121, 165, 169, 213, 217, 317, 321, 333, 353, 397, 401, 461, 481, 637, 593, 733, 689, 877, 801, 981, 921, 1157, 1185, 1197, 1217, 1261, 1265, 1325, 1345, 1501, 1457, 1613, 1585, 1829, 1721, 2037, 1913, 2381, 2145, 2477, 2409, 2685
Offset: 0

Views

Author

N. J. A. Sloane, Aug 30 2014

Keywords

Comments

a(2^k-1) begins 1,5,21,85, which is (4^k-1)/3, but a(15) = 317 not 341, breaking the pattern.

Crossrefs

Cf. A246333, A246334, A247001. Similar to but different from A169707.

Programs

  • Mathematica
    max = 100; (Partition[Total[Flatten[#]]& /@ CellularAutomaton[{493, {2, {{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}}, {1, 1}}, {{{1}}, 0}, max], 2] /. {a_, b_} -> {a, (max + 1 - Mod[max, 2])^2 - b} )[[All, 2]] (* Jean-François Alcover, Oct 03 2018 *)

A246334 First bisection of A246333.

Original entry on oeis.org

1, 5, 17, 29, 61, 73, 109, 157, 229, 241, 277, 329, 429, 477, 573, 633, 861, 873, 909, 961, 1061, 1113, 1237, 1353, 1645, 1661, 1893, 1969, 2325, 2321, 2669, 2693, 3245, 3305, 3341, 3393, 3493, 3545, 3669, 3785, 4077, 4097, 4357, 4489, 4909, 4929, 5437, 5553, 6373
Offset: 0

Views

Author

N. J. A. Sloane, Aug 30 2014

Keywords

Crossrefs

Programs

  • Mathematica
    max = 100; (Partition[Total[Flatten[#]]& /@ CellularAutomaton[{493, {2, {{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}}, {1, 1}}, {{{1}}, 0}, max], 2] /. {a_, b_} -> {a, (max + 1 - Mod[max, 2])^2 - b} )[[All, 1]] (* Jean-François Alcover, Oct 03 2018 *)

Extensions

Minor typo in name corrected by Vincenzo Librandi, Aug 30 2014

A169707 Total number of ON cells at stage n of two-dimensional cellular automaton defined by "Rule 750" using the von Neumann neighborhood.

Original entry on oeis.org

1, 5, 9, 21, 25, 37, 57, 85, 89, 101, 121, 149, 169, 213, 281, 341, 345, 357, 377, 405, 425, 469, 537, 597, 617, 661, 729, 805, 889, 1045, 1241, 1365, 1369, 1381, 1401, 1429, 1449, 1493, 1561, 1621, 1641, 1685, 1753, 1829, 1913, 2069, 2265, 2389, 2409, 2453, 2521
Offset: 1

Views

Author

N. J. A. Sloane, Apr 17 2010

Keywords

Comments

Square grid, 4 neighbors per cell (N, E, S, W cells), turn ON iff exactly 1 or 3 neighbors are ON; once ON, cells stay ON.
The terms agree with those of A246335 for n <= 11, although the configurations are different starting at n = 7. - N. J. A. Sloane, Sep 21 2014
Offset 1 is best for giving a formula for a(n), although the Maple and Mathematica programs index the states starting at state 0.
It appears that this shares infinitely many terms with both A162795 and A147562, see Formula section and Example section. - Omar E. Pol, Feb 19 2015

Examples

			Divides naturally into blocks of sizes 1,2,4,8,16,...:
1,
5, 9,
21, 25, 37, 57,
85, 89, 101, 121, 149, 169, 213, 281, <- terms 8 through 15
341, 345, 357, 377, 405, 425, 469, 537, 597, 617, 661, 729, 805, 889, 1045, 1241,
1365, 1369, 1381, 1401, 1429, 1449, 1493, 1561, 1621, 1641, 1685, 1753, 1829, 1913, 2069, 2265, 2389, 2409, 2453, 2521, ...
From _Omar E. Pol_, Feb 18 2015: (Start)
Also, written as an irregular triangle T(j,k), k>=1, in which the row lengths are the terms of A011782:
1;
5;
9,   21;
25,  37,   57,  85;
89,  101, 121, 149, 169, 213, 281, 341;
345, 357, 377, 405, 425, 469, 537, 597, 617, 661, 729, 805, 889, 1045, 1241, 1365;
The right border gives the positive terms of A002450.
It appears that T(j,k) = A162795(j,k) = A147562(j,k), if k is a power of 2, for example: it appears that the three mentioned triangles only share the elements from the columns 1, 2, 4, 8, 16, ...
(End)
		

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 928.

Crossrefs

Cf. A169708 (first differences), A147562, A147582, A169648, A169649, A169709, A169710, A246333, A246334, A246335, A246336, A253098 (partial sums).
See A253088 for the analogous CA using Rule 750 and a 9-celled neighborhood.

Programs

  • Maple
    (Maple program that uses the actual definition of the automaton, rather than the (conjectured) formula, from N. J. A. Sloane, Feb 15 2015):
    # Count terms in a polynomial:
    C := f->`if`(type(f, `+`), nops(f), 1);
    # Replace all nonzero coeffts by 1:
    bool := proc(f) local ix, iy, f2, i, t1, t2, A;
    f2:=expand(f);
    if whattype(f) = `+` then
    t1:=nops(f2); A:=0;
    for i from 1 to t1 do t2:=op(i, f2); ix:=degree(t2, x); iy:=degree(t2, y);
    A:=A+x^ix*y^iy; od: A;
    else ix:=degree(f2, x); iy:=degree(f2, y); x^ix*y^iy;
    fi;
    end;
    # a loop that produces M steps of A169707 and A169708:
    M:=20;
    F:=x*y+x/y+1/x*y+1/x/y mod 2;
    GG[0]:=1;
    for n from 1 to M do dd[n]:=expand(F*GG[n-1]) mod 2;
    GG[n]:=bool(GG[n-1]+dd[n]);
    lprint(n,C(GG[n]), C(GG[n]-GG[n-1])); od:
  • Mathematica
    Map[Function[Apply[Plus,Flatten[ #1]]], CellularAutomaton[{ 750, {2,{{0,2,0},{2,1,2},{0,2,0}}},{1,1}},{{{1}},0},100]]
    ArrayPlot /@ CellularAutomaton[{750, {2, {{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}}, {1, 1}}, {{{1}}, 0}, 23]
    (* The next two lines deal with the equivalent CA based on neighbors NW, NE, SE, SW. This is to facilitate the comparison with A246333 and A246335 *)
    Map[Function[Apply[Plus, Flatten[ #1]]], CellularAutomaton[{ 750, {2, {{2, 0, 2}, {0, 1, 0}, {2, 0, 2}}}, {1, 1}}, {{{1}}, 0}, 100]]
    ArrayPlot /@ CellularAutomaton[{750, {2, {{2, 0, 2}, {0, 1, 0}, {2, 0, 2}}}, {1, 1}}, {{{1}}, 0}, 23]

Formula

a(2^k + i) = (4^(k+1)-1)/3 + 4*A246336(i), for k >= 0, 0 <= i < 2^k. For example, if n = 15 = 2^3 + 7, so k=3, i=7, we have a(15) = (4^4-1)/3 + 4*A246336(7) = 85 + 4*49 = 281.
a(n) = 1 + 2*(A139250(n) - A160552(n)) = A160164(n) - A170903(n) = A187220(n) + 2*(A160552(n-1)). - Omar E. Pol, Feb 18 2015
It appears that a(n) = A162795(n) = A147562(n), if n is a member of A048645, otherwise a(n) > A162795(n) > A147562(n). - Omar E. Pol, Feb 19 2015
It appears that a(n) = 1 + 4*A255747(n-1). - Omar E. Pol, Mar 05 2015
It appears that a(n) = 1 + 4*(A139250(n-1) - (a(n-1) - 1)/4), n > 1. - Omar E. Pol, Jul 24 2015
It appears that a(2n) = 1 + 4*A162795(n). - Omar E. Pol, Jul 04 2017

Extensions

Edited (added formula, illustration, etc.) by N. J. A. Sloane, Aug 30 2014
Offset changed to 1 by N. J. A. Sloane, Feb 09 2015

A256138 Total number of ON states after n generations of cellular automaton of A151723 based on hexagons, if we only look at two opposite 120-degree wedges, including the central cell.

Original entry on oeis.org

1, 5, 9, 21, 25, 37, 57, 85, 89, 101, 121, 157, 193, 221, 273, 333, 337, 349, 369, 405, 441, 477, 545, 645, 713, 741, 793, 885, 993, 1069, 1193, 1317, 1321, 1333, 1353, 1389, 1425, 1461, 1529, 1629, 1697, 1733, 1801, 1917, 2065, 2197, 2361, 2589, 2721, 2749, 2801, 2893, 3001, 3109, 3281, 3549, 3785, 3893, 4017, 4237, 4513, 4709, 4985, 5237
Offset: 1

Views

Author

Omar E. Pol, Mar 20 2015

Keywords

Comments

First differs from both A169707 and A246335 at a(12).
First differs from the average of A169707 and A246335 at a(13).
Note that the above mentioned cellular automata work on the square grid.
A256139 gives the number of cells turned ON at the n-th stage.

Crossrefs

Formula

a(n) = 1 + 2*(A151723(n) - 1)/3 = 1 - 4*n + 4*A169780(n).
a(n) = 1 + 4*A169779(n-2), n >= 2.
a(n) = A151723(n) - 2*A169779(n-2), n >= 2.

A247001 A246335(2^n-1).

Original entry on oeis.org

1, 5, 21, 85, 317, 1157
Offset: 0

Views

Author

N. J. A. Sloane, Sep 21 2014

Keywords

Comments

Mysteriously different from A002450.

Crossrefs

Showing 1-5 of 5 results.