cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A169707 Total number of ON cells at stage n of two-dimensional cellular automaton defined by "Rule 750" using the von Neumann neighborhood.

Original entry on oeis.org

1, 5, 9, 21, 25, 37, 57, 85, 89, 101, 121, 149, 169, 213, 281, 341, 345, 357, 377, 405, 425, 469, 537, 597, 617, 661, 729, 805, 889, 1045, 1241, 1365, 1369, 1381, 1401, 1429, 1449, 1493, 1561, 1621, 1641, 1685, 1753, 1829, 1913, 2069, 2265, 2389, 2409, 2453, 2521
Offset: 1

Views

Author

N. J. A. Sloane, Apr 17 2010

Keywords

Comments

Square grid, 4 neighbors per cell (N, E, S, W cells), turn ON iff exactly 1 or 3 neighbors are ON; once ON, cells stay ON.
The terms agree with those of A246335 for n <= 11, although the configurations are different starting at n = 7. - N. J. A. Sloane, Sep 21 2014
Offset 1 is best for giving a formula for a(n), although the Maple and Mathematica programs index the states starting at state 0.
It appears that this shares infinitely many terms with both A162795 and A147562, see Formula section and Example section. - Omar E. Pol, Feb 19 2015

Examples

			Divides naturally into blocks of sizes 1,2,4,8,16,...:
1,
5, 9,
21, 25, 37, 57,
85, 89, 101, 121, 149, 169, 213, 281, <- terms 8 through 15
341, 345, 357, 377, 405, 425, 469, 537, 597, 617, 661, 729, 805, 889, 1045, 1241,
1365, 1369, 1381, 1401, 1429, 1449, 1493, 1561, 1621, 1641, 1685, 1753, 1829, 1913, 2069, 2265, 2389, 2409, 2453, 2521, ...
From _Omar E. Pol_, Feb 18 2015: (Start)
Also, written as an irregular triangle T(j,k), k>=1, in which the row lengths are the terms of A011782:
1;
5;
9,   21;
25,  37,   57,  85;
89,  101, 121, 149, 169, 213, 281, 341;
345, 357, 377, 405, 425, 469, 537, 597, 617, 661, 729, 805, 889, 1045, 1241, 1365;
The right border gives the positive terms of A002450.
It appears that T(j,k) = A162795(j,k) = A147562(j,k), if k is a power of 2, for example: it appears that the three mentioned triangles only share the elements from the columns 1, 2, 4, 8, 16, ...
(End)
		

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 928.

Crossrefs

Cf. A169708 (first differences), A147562, A147582, A169648, A169649, A169709, A169710, A246333, A246334, A246335, A246336, A253098 (partial sums).
See A253088 for the analogous CA using Rule 750 and a 9-celled neighborhood.

Programs

  • Maple
    (Maple program that uses the actual definition of the automaton, rather than the (conjectured) formula, from N. J. A. Sloane, Feb 15 2015):
    # Count terms in a polynomial:
    C := f->`if`(type(f, `+`), nops(f), 1);
    # Replace all nonzero coeffts by 1:
    bool := proc(f) local ix, iy, f2, i, t1, t2, A;
    f2:=expand(f);
    if whattype(f) = `+` then
    t1:=nops(f2); A:=0;
    for i from 1 to t1 do t2:=op(i, f2); ix:=degree(t2, x); iy:=degree(t2, y);
    A:=A+x^ix*y^iy; od: A;
    else ix:=degree(f2, x); iy:=degree(f2, y); x^ix*y^iy;
    fi;
    end;
    # a loop that produces M steps of A169707 and A169708:
    M:=20;
    F:=x*y+x/y+1/x*y+1/x/y mod 2;
    GG[0]:=1;
    for n from 1 to M do dd[n]:=expand(F*GG[n-1]) mod 2;
    GG[n]:=bool(GG[n-1]+dd[n]);
    lprint(n,C(GG[n]), C(GG[n]-GG[n-1])); od:
  • Mathematica
    Map[Function[Apply[Plus,Flatten[ #1]]], CellularAutomaton[{ 750, {2,{{0,2,0},{2,1,2},{0,2,0}}},{1,1}},{{{1}},0},100]]
    ArrayPlot /@ CellularAutomaton[{750, {2, {{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}}, {1, 1}}, {{{1}}, 0}, 23]
    (* The next two lines deal with the equivalent CA based on neighbors NW, NE, SE, SW. This is to facilitate the comparison with A246333 and A246335 *)
    Map[Function[Apply[Plus, Flatten[ #1]]], CellularAutomaton[{ 750, {2, {{2, 0, 2}, {0, 1, 0}, {2, 0, 2}}}, {1, 1}}, {{{1}}, 0}, 100]]
    ArrayPlot /@ CellularAutomaton[{750, {2, {{2, 0, 2}, {0, 1, 0}, {2, 0, 2}}}, {1, 1}}, {{{1}}, 0}, 23]

Formula

a(2^k + i) = (4^(k+1)-1)/3 + 4*A246336(i), for k >= 0, 0 <= i < 2^k. For example, if n = 15 = 2^3 + 7, so k=3, i=7, we have a(15) = (4^4-1)/3 + 4*A246336(7) = 85 + 4*49 = 281.
a(n) = 1 + 2*(A139250(n) - A160552(n)) = A160164(n) - A170903(n) = A187220(n) + 2*(A160552(n-1)). - Omar E. Pol, Feb 18 2015
It appears that a(n) = A162795(n) = A147562(n), if n is a member of A048645, otherwise a(n) > A162795(n) > A147562(n). - Omar E. Pol, Feb 19 2015
It appears that a(n) = 1 + 4*A255747(n-1). - Omar E. Pol, Mar 05 2015
It appears that a(n) = 1 + 4*(A139250(n-1) - (a(n-1) - 1)/4), n > 1. - Omar E. Pol, Jul 24 2015
It appears that a(2n) = 1 + 4*A162795(n). - Omar E. Pol, Jul 04 2017

Extensions

Edited (added formula, illustration, etc.) by N. J. A. Sloane, Aug 30 2014
Offset changed to 1 by N. J. A. Sloane, Feb 09 2015

A151548 When A160552 is regarded as a triangle with rows of lengths 1, 1, 2, 4, 8, 16, ..., this is what the rows converge to.

Original entry on oeis.org

1, 3, 5, 7, 5, 11, 17, 15, 5, 11, 17, 19, 21, 39, 49, 31, 5, 11, 17, 19, 21, 39, 49, 35, 21, 39, 53, 59, 81, 127, 129, 63, 5, 11, 17, 19, 21, 39, 49, 35, 21, 39, 53, 59, 81, 127, 129, 67, 21, 39, 53, 59, 81, 127, 133, 91, 81, 131, 165, 199, 289, 383, 321, 127, 5, 11, 17, 19, 21, 39
Offset: 0

Views

Author

David Applegate, May 18 2009

Keywords

Comments

When convolved with A151575: (1, 0, 2, -2, 6, -10, 22, -42, 86, -170, 342, ...) equals the toothpick sequence A139250: (1, 3, 7, 11, 15, 23, 35, 43, ...). - Gary W. Adamson, May 25 2009
Equals A160552: [1, 1, 3, 1, 3, 5, ...] convolved with [1, 2, 0, 0, 0, ...], equivalent to a(n) = 2*A160552(n) + A160552(n+1). - Gary W. Adamson, Jun 04 2009
Equals (1, 0, -2, 2, -2, 2, ...) convolved with the Toothpick sequence, A139250. - Gary W. Adamson, Mar 06 2012
It appears that the sums of two successive terms give A147646. - Omar E. Pol, Feb 18 2015

Examples

			From _Omar E. Pol_, Jul 24 2009: (Start)
When written as a triangle:
1;
3;
5,7;
5,11,17,15;
5,11,17,19,21,39,49,31;
5,11,17,19,21,39,49,35,21,39,53,59,81,127,129,63;
5,11,17,19,21,39,49,35,21,39,53,59,81,127,129,67,21,39,53,59,81,127,133,91,...
(End)
		

Crossrefs

Programs

  • Maple
    G := 1/(1+x) + 4*x*mul(1+x^(2^k-1)+2*x^(2^k),k=1..20); # N. J. A. Sloane, May 23 2009
    S2:=proc(n) option remember; local i,j;
    if n <= 1 then RETURN(2*n+1); fi;
    i:=floor(log(n)/log(2));
    j:=n-2^i;
    if j=0 then 5 elif j=2^i-1 then 2*n+1
    else 2*S2(j)+S2(j+1); fi;
    end; # - N. J. A. Sloane, May 22 2009
  • Mathematica
    terms = 70; CoefficientList[1/(1 + x) + 4*x*Product[1 + x^(2^k - 1) + 2*x^(2^k), {k, 1, Log[2, terms] // Ceiling}] + O[x]^terms, x] (* Jean-François Alcover, Nov 14 2017, after N. J. A. Sloane *)

Formula

a(2^k-1) = 2^(k+1)-1 for k >= 0; otherwise a(2^k) = 5 for k >= 1; otherwise a(2^i+j) = 2a(j)+a(j+1) for i >= 2, 1 <= j <= 2^i-2. - N. J. A. Sloane, May 22 2009
G.f.: 1/(1+x) + 4*x*mul(1+x^(2^k-1)+2*x^(2^k),k=1..oo). - N. J. A. Sloane, May 23 2009
a(n) = A147646(n) - a(n-1), n >= 1. - Omar E. Pol, Feb 19 2015

A255747 Partial sums of A160552.

Original entry on oeis.org

0, 1, 2, 5, 6, 9, 14, 21, 22, 25, 30, 37, 42, 53, 70, 85, 86, 89, 94, 101, 106, 117, 134, 149, 154, 165, 182, 201, 222, 261, 310, 341, 342, 345, 350, 357, 362, 373, 390, 405, 410, 421, 438, 457, 478, 517, 566, 597, 602, 613, 630, 649, 670, 709, 758, 793, 814, 853, 906, 965, 1046, 1173, 1302, 1365, 1366, 1369, 1374
Offset: 0

Views

Author

Omar E. Pol, Mar 05 2015

Keywords

Comments

It appears that the sums of two successive terms give the positive terms of the toothpick sequence A139250.
It appears that the odd terms (a bisection) give A162795.
It appears that a(n) is also the total number of ON cells at stage n+1 in one of the four wedges of two-dimensional cellular automaton "Rule 750" using the von Neumann neighborhood (see A169707). Therefore a(n) is also the total number of ON cells at stage n+1 in one of the four quadrants of the NW-NE-SE-SW version of that cellular automaton.
See also the formula section.
First differs from A169779 at a(11).

Examples

			Also, written as an irregular triangle in which the row lengths are the terms of A011782 (the number of compositions of n, n >= 0), the sequence begins:
0;
1;
2,   5;
6,   9, 14, 21;
22, 25, 30, 37, 42, 53, 70, 85;
86, 89, 94,101,106,117,134,149,154,165,182,201,222,261,310,341;
...
It appears that the first column gives 0 together with the terms of A047849, hence the right border gives A002450.
It appears that this triangle only shares with A151920 the positive elements of the columns 1, 2, 4, 8, 16, ... (the powers of 2).
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Nest[Join[#, 2 # + Append[Rest@#, 1]] &, {0}, 6]] (* Ivan Neretin, Feb 09 2017 *)

Formula

It appears that a(n) + a(n-1) = A139250(n), n >= 1.
It appears that a(2n-1) = A162795(n), n >= 1.
It appears that a(n) = (A169707(n+1) - 1)/4.
Showing 1-3 of 3 results.