A246353 If n = Sum 2^e_i, e_i distinct, then a(n) = Position of (product prime_{e_i+1}) among squarefree numbers (A005117).
1, 2, 3, 5, 4, 7, 11, 19, 6, 10, 14, 28, 23, 44, 65, 129, 8, 15, 21, 41, 34, 69, 101, 203, 48, 94, 144, 283, 233, 470, 703, 1405, 9, 17, 26, 49, 40, 80, 120, 236, 57, 111, 168, 334, 279, 554, 833, 1661, 89, 176, 261, 521, 438, 873, 1304, 2610, 609, 1217, 1827, 3650, 3046, 6091, 9131
Offset: 0
Keywords
Links
Programs
-
PARI
allocatemem(234567890); default(primelimit, 2^22) uplim_for_13928 = 13123111; v013928 = vector(uplim_for_13928); A013928(n) = v013928[n]; v013928[1]=0; n=1; while((n < uplim_for_13928), if(issquarefree(n), v013928[n+1] = v013928[n]+1, v013928[n+1] = v013928[n]); n++); A019565(n) = {factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler A246353(n) = 1+A013928(A019565(n)); for(n=0, 478, write("b246353.txt", n, " ", A246353(n)));
-
Python
from math import prod, isqrt from sympy import prime, mobius def A246353(n): m = prod(prime(i) for i,j in enumerate(bin(n)[-1:1:-1],1) if j=='1') return int(sum(mobius(k)*(m//k**2) for k in range(1, isqrt(m)+1))) # Chai Wah Wu, Feb 22 2025
-
Scheme
(definec (A246353 n) (let loop ((n n) (i 1) (p 1)) (cond ((zero? n) (A013928 (+ 1 p))) ((odd? n) (loop (/ (- n 1) 2) (+ 1 i) (* p (A000040 i)))) (else (loop (/ n 2) (+ 1 i) p)))))
Comments