A246356 Numbers k such that d(r,k) = 0 and d(s,k) = 0, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {sqrt(3)}, and { } = fractional part.
6, 9, 12, 20, 24, 28, 29, 37, 48, 52, 57, 58, 62, 66, 69, 81, 82, 89, 93, 96, 102, 104, 106, 111, 113, 122, 129, 130, 139, 144, 149, 151, 159, 161, 163, 165, 166, 177, 179, 181, 186, 187, 190, 191, 195, 201, 202, 204, 217, 219, 220, 222, 225, 228, 232, 233
Offset: 1
Examples
{sqrt(2)} has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1,... {sqrt(3)} has binary digits 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0,.. so that a(1) = 6.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 500; r = FractionalPart[Sqrt[2]]; s = FractionalPart[Sqrt[3]]; u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]] v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]] t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}]; t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}]; t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}]; t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}]; Flatten[Position[t1, 1]] (* A246356 *) Flatten[Position[t2, 1]] (* A246357 *) Flatten[Position[t3, 1]] (* A246358 *) Flatten[Position[t4, 1]] (* A247356 *)
Comments