cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246356 Numbers k such that d(r,k) = 0 and d(s,k) = 0, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {sqrt(3)}, and { } = fractional part.

Original entry on oeis.org

6, 9, 12, 20, 24, 28, 29, 37, 48, 52, 57, 58, 62, 66, 69, 81, 82, 89, 93, 96, 102, 104, 106, 111, 113, 122, 129, 130, 139, 144, 149, 151, 159, 161, 163, 165, 166, 177, 179, 181, 186, 187, 190, 191, 195, 201, 202, 204, 217, 219, 220, 222, 225, 228, 232, 233
Offset: 1

Views

Author

Clark Kimberling, Sep 17 2014

Keywords

Comments

Every positive integer lies in exactly one of these: A246356, A246357, A246358, A247356. Let s denote any of these; is lim(#s < n)/n = 1/4, where (#s < n) represents the number of numbers in s that are < n?

Examples

			{sqrt(2)} has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1,...
{sqrt(3)} has binary digits 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0,..
so that a(1) = 6.
		

Crossrefs

Programs

  • Mathematica
    z = 500; r = FractionalPart[Sqrt[2]]; s = FractionalPart[Sqrt[3]];
    u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]
    v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]
    t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}];
    t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}];
    t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}];
    t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}];
    Flatten[Position[t1, 1]]  (* A246356 *)
    Flatten[Position[t2, 1]]  (* A246357 *)
    Flatten[Position[t3, 1]]  (* A246358 *)
    Flatten[Position[t4, 1]]  (* A247356 *)