cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A247454 Numbers k such that d(r,k) = d(s,k), where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {sqrt(3)}, and { } = fractional part.

Original entry on oeis.org

3, 5, 6, 7, 9, 12, 16, 17, 19, 20, 22, 23, 24, 28, 29, 30, 32, 33, 37, 41, 45, 48, 49, 52, 56, 57, 58, 61, 62, 66, 67, 69, 74, 75, 76, 81, 82, 88, 89, 90, 91, 93, 96, 98, 99, 101, 102, 104, 105, 106, 108, 111, 113, 115, 116, 117, 120, 122, 125, 129, 130, 131
Offset: 1

Views

Author

Clark Kimberling, Sep 17 2014

Keywords

Comments

Every positive integer lies in exactly one of the sequences A247454 and A247324. Let s denote either sequence; is lim(#s < n)/n = 1/2, where (#s < n) represents the number of numbers in s that are < n?

Examples

			{sqrt(2)} has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1,...
{sqrt(3)} has binary digits 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0,..
so that a(1) = 3 and a(2) = 5.
		

Crossrefs

Programs

  • Mathematica
    z = 200; r = FractionalPart[Sqrt[2]]; s = FractionalPart[Sqrt[3]];
    u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]];
    v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]];
    t = Table[If[u[[n]] == v[[n]], 1, 0], {n, 1, z}];
    Flatten[Position[t, 1]]  (* A247454 *)
    Flatten[Position[t, 0]]  (* A247324 *)

A247455 Numbers k such that d(r,k) = 0 and d(s,k) = 0, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {3*sqrt(2)}, and { } = fractional part.

Original entry on oeis.org

1, 8, 9, 10, 11, 15, 21, 25, 29, 38, 42, 48, 51, 54, 57, 58, 59, 62, 64, 66, 70, 72, 78, 81, 82, 86, 89, 93, 96, 107, 109, 111, 113, 122, 128, 130, 134, 136, 139, 144, 147, 148, 149, 151, 153, 161, 162, 165, 169, 173, 181, 182, 183, 187, 191, 195, 200, 202
Offset: 1

Views

Author

Clark Kimberling, Sep 18 2014

Keywords

Comments

Every positive integer lies in exactly one of these: A247455, A247456, A247457, A247758. Let s denote any of these; what can be said about lim(#s < n)/n, where (#s < n) represents the number of numbers in s that are < n?

Examples

			{1*sqrt(2)} has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,...
{3*sqrt(2)} has binary digits 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1,...
so that a(1) = 2 and a(2) = 8.
		

Crossrefs

Programs

  • Mathematica
    z = 400; r = FractionalPart[Sqrt[2]]; s = FractionalPart[3*Sqrt[2]];
    u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]
    v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]
    t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}];
    t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}];
    t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}];
    t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}];
    Flatten[Position[t1, 1]]  (* A247455 *)
    Flatten[Position[t2, 1]]  (* A247456 *)
    Flatten[Position[t3, 1]]  (* A247457 *)
    Flatten[Position[t4, 1]]  (* A247458 *)

A246357 Numbers k such that d(r,k) = 0 and d(s,k) = 1, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {sqrt(3)}, and { } = fractional part.

Original entry on oeis.org

1, 4, 8, 10, 11, 14, 15, 21, 25, 38, 42, 47, 51, 54, 55, 59, 60, 63, 64, 70, 72, 78, 83, 85, 86, 92, 100, 107, 109, 119, 121, 128, 134, 136, 147, 148, 150, 153, 157, 162, 168, 169, 173, 182, 183, 184, 198, 200, 209, 211, 214, 215, 218, 226, 227, 229, 241
Offset: 1

Views

Author

Clark Kimberling, Sep 17 2014

Keywords

Comments

Every positive integer lies in exactly one of these: A246356, A246357, A246358, A247356.

Examples

			{sqrt(2)} has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1,...
{sqrt(3)} has binary digits 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0,..
so that a(1) = 1 and a(2) = 4.
		

Crossrefs

Programs

  • Mathematica
    z = 500; r = FractionalPart[Sqrt[2]]; s = FractionalPart[Sqrt[3]];
    u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]
    v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]
    t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}];
    t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}];
    t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}];
    t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}];
    Flatten[Position[t1, 1]]  (* A246356 *)
    Flatten[Position[t2, 1]]  (* A246357 *)
    Flatten[Position[t3, 1]]  (* A246358 *)
    Flatten[Position[t4, 1]]  (* A247356 *)

A246358 Numbers k such that d(r,k) = 1 and d(s,k) = 0, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {sqrt(3)}, and { } = fractional part.

Original entry on oeis.org

2, 13, 18, 26, 27, 31, 34, 35, 36, 39, 40, 43, 44, 46, 50, 53, 65, 68, 71, 73, 77, 79, 80, 84, 87, 94, 95, 97, 103, 110, 112, 114, 118, 123, 124, 126, 127, 132, 133, 135, 142, 143, 145, 146, 152, 155, 156, 160, 171, 174, 176, 180, 192, 196, 197, 205, 206
Offset: 1

Views

Author

Clark Kimberling, Sep 17 2014

Keywords

Comments

Every positive integer lies in exactly one of these: A246356, A246357, A246358, A247356.

Examples

			{sqrt(2)} has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1,...
{sqrt(3)} has binary digits 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0,..
so that a(1) = 2 and a(2) = 13.
		

Crossrefs

Programs

  • Mathematica
    z = 500; r = FractionalPart[Sqrt[2]]; s = FractionalPart[Sqrt[3]];
    u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]
    v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]
    t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}];
    t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}];
    t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}];
    t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}];
    Flatten[Position[t1, 1]]  (* A246356 *)
    Flatten[Position[t2, 1]]  (* A246357 *)
    Flatten[Position[t3, 1]]  (* A246358 *)
    Flatten[Position[t4, 1]]  (* A247356 *)

A247356 Numbers k such that d(r,k) = 1 and d(s,k) = 1, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {sqrt(3)}, and { } = fractional part.

Original entry on oeis.org

3, 5, 7, 16, 17, 19, 22, 23, 30, 32, 33, 41, 45, 49, 56, 61, 67, 74, 75, 76, 88, 90, 91, 98, 99, 101, 105, 108, 115, 116, 117, 120, 125, 131, 137, 138, 140, 141, 154, 158, 164, 167, 170, 172, 175, 178, 185, 188, 189, 193, 194, 199, 203, 221, 230, 231, 234
Offset: 1

Views

Author

Clark Kimberling, Sep 17 2014

Keywords

Comments

Every positive integer lies in exactly one of these: A246356, A246357, A246358, A247356.

Examples

			{sqrt(2)} has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1,...
{sqrt(3)} has binary digits 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0,..
so that a(1) = 3 and a(2) = 5.
		

Crossrefs

Programs

  • Mathematica
    z = 500; r = FractionalPart[Sqrt[2]]; s = FractionalPart[Sqrt[3]];
    u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]
    v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]
    t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}];
    t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}];
    t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}];
    t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}];
    Flatten[Position[t1, 1]]  (* A246356 *)
    Flatten[Position[t2, 1]]  (* A246357 *)
    Flatten[Position[t3, 1]]  (* A246358 *)
    Flatten[Position[t4, 1]]  (* A247356 *)

A247324 Numbers k such that d(r,k) != d(s,k), where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {sqrt(3)}, and { } = fractional part.

Original entry on oeis.org

1, 2, 4, 8, 10, 11, 13, 14, 15, 18, 21, 25, 26, 27, 31, 34, 35, 36, 38, 39, 40, 42, 43, 44, 46, 47, 50, 51, 53, 54, 55, 59, 60, 63, 64, 65, 68, 70, 71, 72, 73, 77, 78, 79, 80, 83, 84, 85, 86, 87, 92, 94, 95, 97, 100, 103, 107, 109, 110, 112, 114, 118, 119
Offset: 1

Views

Author

Clark Kimberling, Sep 17 2014

Keywords

Comments

Every positive integer lies in exactly one of the sequences A247454 and A247324.

Examples

			{sqrt(2)} has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1,...
{sqrt(3)} has binary digits 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0,..
so that a(1) = 1 and a(2) = 2.
		

Crossrefs

Programs

  • Mathematica
    z = 200; r = FractionalPart[Sqrt[2]]; s = FractionalPart[Sqrt[3]];
    u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]];
    v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]];
    t = Table[If[u[[n]] == v[[n]], 1, 0], {n, 1, z}];
    Flatten[Position[t, 1]]  (* A247454 *)
    Flatten[Position[t, 0]]  (* A247324 *)
Showing 1-6 of 6 results.