A246356
Numbers k such that d(r,k) = 0 and d(s,k) = 0, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {sqrt(3)}, and { } = fractional part.
Original entry on oeis.org
6, 9, 12, 20, 24, 28, 29, 37, 48, 52, 57, 58, 62, 66, 69, 81, 82, 89, 93, 96, 102, 104, 106, 111, 113, 122, 129, 130, 139, 144, 149, 151, 159, 161, 163, 165, 166, 177, 179, 181, 186, 187, 190, 191, 195, 201, 202, 204, 217, 219, 220, 222, 225, 228, 232, 233
Offset: 1
{sqrt(2)} has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1,...
{sqrt(3)} has binary digits 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0,..
so that a(1) = 6.
-
z = 500; r = FractionalPart[Sqrt[2]]; s = FractionalPart[Sqrt[3]];
u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]
v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]
t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}];
t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}];
t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}];
t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}];
Flatten[Position[t1, 1]] (* A246356 *)
Flatten[Position[t2, 1]] (* A246357 *)
Flatten[Position[t3, 1]] (* A246358 *)
Flatten[Position[t4, 1]] (* A247356 *)
A246358
Numbers k such that d(r,k) = 1 and d(s,k) = 0, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {sqrt(3)}, and { } = fractional part.
Original entry on oeis.org
2, 13, 18, 26, 27, 31, 34, 35, 36, 39, 40, 43, 44, 46, 50, 53, 65, 68, 71, 73, 77, 79, 80, 84, 87, 94, 95, 97, 103, 110, 112, 114, 118, 123, 124, 126, 127, 132, 133, 135, 142, 143, 145, 146, 152, 155, 156, 160, 171, 174, 176, 180, 192, 196, 197, 205, 206
Offset: 1
{sqrt(2)} has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1,...
{sqrt(3)} has binary digits 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0,..
so that a(1) = 2 and a(2) = 13.
-
z = 500; r = FractionalPart[Sqrt[2]]; s = FractionalPart[Sqrt[3]];
u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]
v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]
t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}];
t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}];
t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}];
t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}];
Flatten[Position[t1, 1]] (* A246356 *)
Flatten[Position[t2, 1]] (* A246357 *)
Flatten[Position[t3, 1]] (* A246358 *)
Flatten[Position[t4, 1]] (* A247356 *)
A247356
Numbers k such that d(r,k) = 1 and d(s,k) = 1, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {sqrt(3)}, and { } = fractional part.
Original entry on oeis.org
3, 5, 7, 16, 17, 19, 22, 23, 30, 32, 33, 41, 45, 49, 56, 61, 67, 74, 75, 76, 88, 90, 91, 98, 99, 101, 105, 108, 115, 116, 117, 120, 125, 131, 137, 138, 140, 141, 154, 158, 164, 167, 170, 172, 175, 178, 185, 188, 189, 193, 194, 199, 203, 221, 230, 231, 234
Offset: 1
{sqrt(2)} has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1,...
{sqrt(3)} has binary digits 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0,..
so that a(1) = 3 and a(2) = 5.
-
z = 500; r = FractionalPart[Sqrt[2]]; s = FractionalPart[Sqrt[3]];
u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]
v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]
t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}];
t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}];
t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}];
t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}];
Flatten[Position[t1, 1]] (* A246356 *)
Flatten[Position[t2, 1]] (* A246357 *)
Flatten[Position[t3, 1]] (* A246358 *)
Flatten[Position[t4, 1]] (* A247356 *)
Showing 1-3 of 3 results.
Comments