cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A247456 Numbers k such that d(r,k) = 0 and d(s,k) = 1, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {3*sqrt(2)}, and { } = fractional part.

Original entry on oeis.org

4, 6, 12, 14, 20, 24, 28, 37, 47, 52, 55, 60, 63, 69, 83, 85, 92, 100, 102, 104, 106, 119, 121, 129, 150, 157, 159, 163, 166, 168, 177, 179, 184, 186, 190, 198, 201, 215, 219, 228, 232, 236, 241, 246, 250, 252, 254, 256, 258, 271, 276, 284, 288, 303, 305
Offset: 1

Views

Author

Clark Kimberling, Sep 18 2014

Keywords

Comments

Every positive integer lies in exactly one of these: A247455, A247456, A247457, A247458.

Examples

			{1*sqrt(2)} has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,...
{3*sqrt(2)} has binary digits 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1,...
so that a(1) = 4 and a(2) = 6.
		

Crossrefs

Programs

  • Mathematica
    z = 400; r = FractionalPart[Sqrt[2]]; s = FractionalPart[3*Sqrt[2]];
    u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]
    v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]
    t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}];
    t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}];
    t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}];
    t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}];
    Flatten[Position[t1, 1]]  (* A247455 *)
    Flatten[Position[t2, 1]]  (* A247456 *)
    Flatten[Position[t3, 1]]  (* A247457 *)
    Flatten[Position[t4, 1]]  (* A247458 *)

A247457 Numbers k such that d(r,k) = 1 and d(s,k) = 0, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {3*sqrt(2)}, and { } = fractional part.

Original entry on oeis.org

2, 18, 22, 26, 35, 41, 45, 49, 65, 67, 71, 77, 79, 88, 90, 95, 98, 108, 110, 112, 117, 126, 133, 135, 138, 143, 145, 152, 155, 172, 175, 188, 194, 196, 203, 208, 210, 212, 221, 223, 230, 234, 239, 243, 260, 262, 268, 278, 292, 294, 296, 299, 310, 312, 319
Offset: 1

Views

Author

Clark Kimberling, Sep 18 2014

Keywords

Comments

Every positive integer lies in exactly one of these: A247455, A247456, A247457, A247458.

Examples

			{1*sqrt(2)} has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,...
{3*sqrt(2)} has binary digits 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1,...
so that a(1) = 2.
		

Crossrefs

Programs

  • Mathematica
    z = 400; r = FractionalPart[Sqrt[2]]; s = FractionalPart[3*Sqrt[2]];
    u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]
    v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]
    t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}];
    t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}];
    t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}];
    t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}];
    Flatten[Position[t1, 1]]  (* A247455 *)
    Flatten[Position[t2, 1]]  (* A247456 *)
    Flatten[Position[t3, 1]]  (* A247457 *)
    Flatten[Position[t4, 1]]  (* A247458 *)

A247458 Numbers k such that d(r,k) = 1 and d(s,k) = 1, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {3*sqrt(2)}, and { } = fractional part.

Original entry on oeis.org

3, 5, 7, 13, 16, 17, 19, 23, 27, 30, 31, 32, 33, 34, 36, 39, 40, 43, 44, 46, 50, 53, 56, 61, 68, 73, 74, 75, 76, 80, 84, 87, 91, 94, 97, 99, 101, 103, 105, 114, 115, 116, 118, 120, 123, 124, 125, 127, 131, 132, 137, 140, 141, 142, 146, 154, 156, 158, 160
Offset: 1

Views

Author

Clark Kimberling, Sep 18 2014

Keywords

Comments

Every positive integer lies in exactly one of these: A247455, A247456, A247457, A247458.

Examples

			{1*sqrt(2)} has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,...
{3*sqrt(2)} has binary digits 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1,...
so that a(1) = 3 and a(2) = 5.
		

Crossrefs

Programs

  • Mathematica
    z = 400; r = FractionalPart[Sqrt[2]]; s = FractionalPart[3*Sqrt[2]];
    u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]
    v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]
    t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}];
    t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}];
    t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}];
    t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}];
    Flatten[Position[t1, 1]]  (* A247455 *)
    Flatten[Position[t2, 1]]  (* A247456 *)
    Flatten[Position[t3, 1]]  (* A247457 *)
    Flatten[Position[t4, 1]]  (* A247458 *)

A247459 Numbers k such that d(r,k) = d(s,k), where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {3*sqrt(2)}, and { } = fractional part.

Original entry on oeis.org

1, 3, 5, 7, 8, 9, 10, 11, 13, 15, 16, 17, 19, 21, 23, 25, 27, 29, 30, 31, 32, 33, 34, 36, 38, 39, 40, 42, 43, 44, 46, 48, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 64, 66, 68, 70, 72, 73, 74, 75, 76, 78, 80, 81, 82, 84, 86, 87, 89, 91, 93, 94, 96, 97, 99, 101
Offset: 1

Views

Author

Clark Kimberling, Sep 18 2014

Keywords

Comments

Every positive integer lies in exactly one of the sequences A247459 and A247460.

Examples

			{1*sqrt(2)} has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,...
{3*sqrt(2)} has binary digits 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1,...
so that a(1) = 1 and a(2) = 3.
		

Crossrefs

Programs

  • Mathematica
    z = 200; r = FractionalPart[Sqrt[2]]; s = FractionalPart[3*Sqrt[2]];
    u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]];
    v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]];
    t = Table[If[u[[n]] == v[[n]], 1, 0], {n, 1, z}];
    Flatten[Position[t, 1]]  (* A247459 *)
    Flatten[Position[t, 0]]  (* A247460 *)

A247460 Numbers k such that d(r,k) != d(s,k), where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {3*sqrt(2)}, and { } = fractional part.

Original entry on oeis.org

2, 4, 6, 12, 14, 18, 20, 22, 24, 26, 28, 35, 37, 41, 45, 47, 49, 52, 55, 60, 63, 65, 67, 69, 71, 77, 79, 83, 85, 88, 90, 92, 95, 98, 100, 102, 104, 106, 108, 110, 112, 117, 119, 121, 126, 129, 133, 135, 138, 143, 145, 150, 152, 155, 157, 159, 163, 166, 168
Offset: 1

Views

Author

Clark Kimberling, Sep 18 2014

Keywords

Comments

Every positive integer lies in exactly one of the sequences A247459 and A247460.

Examples

			{1*sqrt(2)} has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,...
{3*sqrt(2)} has binary digits 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1,...
so that a(1) = 2 and a(2) = 4.
		

Crossrefs

Programs

  • Mathematica
    z = 200; r = FractionalPart[Sqrt[2]]; s = FractionalPart[3*Sqrt[2]];
    u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]];
    v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]];
    t = Table[If[u[[n]] == v[[n]], 1, 0], {n, 1, z}];
    Flatten[Position[t, 1]]  (* A247459 *)
    Flatten[Position[t, 0]]  (* A247460 *)
Showing 1-5 of 5 results.