A247455
Numbers k such that d(r,k) = 0 and d(s,k) = 0, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {3*sqrt(2)}, and { } = fractional part.
Original entry on oeis.org
1, 8, 9, 10, 11, 15, 21, 25, 29, 38, 42, 48, 51, 54, 57, 58, 59, 62, 64, 66, 70, 72, 78, 81, 82, 86, 89, 93, 96, 107, 109, 111, 113, 122, 128, 130, 134, 136, 139, 144, 147, 148, 149, 151, 153, 161, 162, 165, 169, 173, 181, 182, 183, 187, 191, 195, 200, 202
Offset: 1
{1*sqrt(2)} has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,...
{3*sqrt(2)} has binary digits 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1,...
so that a(1) = 2 and a(2) = 8.
-
z = 400; r = FractionalPart[Sqrt[2]]; s = FractionalPart[3*Sqrt[2]];
u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]
v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]
t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}];
t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}];
t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}];
t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}];
Flatten[Position[t1, 1]] (* A247455 *)
Flatten[Position[t2, 1]] (* A247456 *)
Flatten[Position[t3, 1]] (* A247457 *)
Flatten[Position[t4, 1]] (* A247458 *)
A247457
Numbers k such that d(r,k) = 1 and d(s,k) = 0, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {3*sqrt(2)}, and { } = fractional part.
Original entry on oeis.org
2, 18, 22, 26, 35, 41, 45, 49, 65, 67, 71, 77, 79, 88, 90, 95, 98, 108, 110, 112, 117, 126, 133, 135, 138, 143, 145, 152, 155, 172, 175, 188, 194, 196, 203, 208, 210, 212, 221, 223, 230, 234, 239, 243, 260, 262, 268, 278, 292, 294, 296, 299, 310, 312, 319
Offset: 1
{1*sqrt(2)} has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,...
{3*sqrt(2)} has binary digits 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1,...
so that a(1) = 2.
-
z = 400; r = FractionalPart[Sqrt[2]]; s = FractionalPart[3*Sqrt[2]];
u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]
v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]
t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}];
t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}];
t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}];
t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}];
Flatten[Position[t1, 1]] (* A247455 *)
Flatten[Position[t2, 1]] (* A247456 *)
Flatten[Position[t3, 1]] (* A247457 *)
Flatten[Position[t4, 1]] (* A247458 *)
A247458
Numbers k such that d(r,k) = 1 and d(s,k) = 1, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {3*sqrt(2)}, and { } = fractional part.
Original entry on oeis.org
3, 5, 7, 13, 16, 17, 19, 23, 27, 30, 31, 32, 33, 34, 36, 39, 40, 43, 44, 46, 50, 53, 56, 61, 68, 73, 74, 75, 76, 80, 84, 87, 91, 94, 97, 99, 101, 103, 105, 114, 115, 116, 118, 120, 123, 124, 125, 127, 131, 132, 137, 140, 141, 142, 146, 154, 156, 158, 160
Offset: 1
{1*sqrt(2)} has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,...
{3*sqrt(2)} has binary digits 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1,...
so that a(1) = 3 and a(2) = 5.
-
z = 400; r = FractionalPart[Sqrt[2]]; s = FractionalPart[3*Sqrt[2]];
u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]
v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]
t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}];
t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}];
t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}];
t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}];
Flatten[Position[t1, 1]] (* A247455 *)
Flatten[Position[t2, 1]] (* A247456 *)
Flatten[Position[t3, 1]] (* A247457 *)
Flatten[Position[t4, 1]] (* A247458 *)
Showing 1-3 of 3 results.
Comments