A246361 Numbers n such that if 2n-1 = product_{k >= 1} (p_k)^(c_k), then n >= product_{k >= 1} (p_{k-1})^(c_k), where p_k indicates the k-th prime, A000040(k).
1, 2, 3, 5, 8, 11, 13, 14, 17, 18, 23, 25, 26, 28, 32, 33, 38, 39, 41, 43, 50, 53, 58, 59, 61, 63, 68, 73, 74, 77, 83, 86, 88, 93, 94, 95, 98, 104, 113, 116, 122, 123, 128, 131, 137, 138, 140, 143, 149, 158, 163, 167, 172, 173, 176, 179, 182, 185, 188, 193, 194, 200, 203, 212, 213, 215, 218, 221, 228, 230, 233
Offset: 1
Keywords
Examples
1 is present, as 2*1 - 1 = empty product = 1. 12 is not present, as (2*12)-1 = 23 = p_9, and p_8 = 19, with 12 < 19. 14 is present, as (2*14)-1 = 27 = p_2^3 = 8, and 14 >= 8.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
default(primelimit, 2^30); A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; A064216(n) = A064989((2*n)-1); isA246361(n) = (A064216(n) <= n); n = 0; i = 0; while(i < 10000, n++; if(isA246361(n), i++; write("b246361.txt", i, " ", n))); (Scheme, with Antti Karttunen's IntSeq-library) (define A246361 (MATCHING-POS 1 1 (lambda (n) (<= (A064216 n) n))))
Comments