cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246373 Primes p such that if 2p-1 = product_{k >= 1} A000040(k)^(c_k), then p <= product_{k >= 1} A000040(k-1)^(c_k).

Original entry on oeis.org

2, 3, 7, 19, 29, 31, 37, 47, 67, 71, 79, 89, 97, 101, 103, 107, 109, 127, 139, 151, 157, 181, 191, 197, 199, 211, 223, 227, 229, 241, 251, 269, 271, 277, 283, 307, 317, 331, 337, 349, 359, 367, 373, 379, 397, 409, 421, 433, 439, 457, 461, 467, 487, 499, 521, 541, 547, 569, 571, 577, 601
Offset: 1

Views

Author

Antti Karttunen, Aug 25 2014

Keywords

Comments

Primes p such that A064216(p) >= p, or equally, A064989(2p-1) >= p.
All primes of A005382 are present here, because if 2p-1 is prime q, Bertrand's postulate guarantees (after cases 2 and 3 which are in A048674) that there exists at least one prime r larger than p and less than q = 2p-1, for which A064989(q) = r.

Examples

			2 is present, as 2*2 - 1 = 3 = p_2, and p_{2-1} = p_1 = 2 >= 2.
3 is present, as 2*3 - 1 = 5 = p_3, and p_{3-1} = p_2 = 3 >= 3.
5 is not present, as 2*5 - 1 = 9 = p_2 * p_2, and p_1 * p_1 = 4, with 4 < 5.
7 is present, as 2*7 - 1 = 13 = p_6, and p_5 = 11 >= 7.
		

Crossrefs

Intersection of A000040 and A246372.
Subsequence: A005382.
A246374 gives the primes not here.

Programs

  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    n = 0; forprime(p=2,2^31, if((A064989((2*p)-1) >= p), n++; write("b246373.txt", n, " ", p); if(n > 9999, break)));
    (Scheme, with Antti Karttunen's IntSeq-library)
    (define A246373 (MATCHING-POS 1 1 (lambda (n) (and (prime? n) (>= (A064216 n) n)))))