cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246374 Primes p such that if 2p-1 = product_{k >= 1} A000040(k)^(c_k), then p > product_{k >= 1} A000040(k-1)^(c_k).

Original entry on oeis.org

5, 11, 13, 17, 23, 41, 43, 53, 59, 61, 73, 83, 113, 131, 137, 149, 163, 167, 173, 179, 193, 233, 239, 257, 263, 281, 293, 311, 313, 347, 353, 383, 389, 401, 419, 431, 443, 449, 463, 479, 491, 503, 509, 523, 557, 563, 587, 593, 599, 613, 617, 641, 653, 677, 683, 743, 761, 773, 787, 797
Offset: 1

Views

Author

Antti Karttunen, Aug 25 2014

Keywords

Comments

Primes p such that A064216(p) < p, or equally, A064989(2p-1) < p.
For all primes p here, 2p-1 must be composite (a necessary but not sufficient condition).

Examples

			5 is present, as 2*5 - 1 = 9 = p_2 * p_2, and p_1 * p_1 = 4, and 5 > 4.
		

Crossrefs

Intersection of A000040 and A246371.
A246373 gives the primes not here.

Programs

  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    n = 0; forprime(p=2,2^31, if((A064989((2*p)-1) < p), n++; write("b246374.txt", n, " ", p); if(n > 9999, break)));
    (Scheme, with Antti Karttunen's IntSeq-library)
    (define A246374 (MATCHING-POS 1 1 (lambda (n) (and (prime? n) (< (A064216 n) n)))))